<table>
<thead>
<tr>
<th>Case reports taken</th>
<th>6945</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUIs</td>
<td>165</td>
</tr>
<tr>
<td>Accidents</td>
<td>588</td>
</tr>
<tr>
<td>Domestics</td>
<td>288</td>
</tr>
</tbody>
</table>
Calls For Service By Source

<table>
<thead>
<tr>
<th>Month</th>
<th>911</th>
<th>Phone</th>
<th>On View</th>
</tr>
</thead>
<tbody>
<tr>
<td>December</td>
<td>350</td>
<td>900</td>
<td>500</td>
</tr>
<tr>
<td>January</td>
<td>300</td>
<td>800</td>
<td>450</td>
</tr>
<tr>
<td>February</td>
<td>250</td>
<td>700</td>
<td>400</td>
</tr>
<tr>
<td>March</td>
<td>200</td>
<td>650</td>
<td>350</td>
</tr>
<tr>
<td>April</td>
<td>150</td>
<td>600</td>
<td>300</td>
</tr>
<tr>
<td>May</td>
<td>100</td>
<td>550</td>
<td>250</td>
</tr>
<tr>
<td>June</td>
<td>50</td>
<td>500</td>
<td>200</td>
</tr>
<tr>
<td>July</td>
<td>0</td>
<td>450</td>
<td>150</td>
</tr>
<tr>
<td>August</td>
<td>0</td>
<td>400</td>
<td>100</td>
</tr>
<tr>
<td>September</td>
<td>0</td>
<td>350</td>
<td>50</td>
</tr>
<tr>
<td>October</td>
<td>0</td>
<td>300</td>
<td>25</td>
</tr>
<tr>
<td>November</td>
<td>0</td>
<td>250</td>
<td>20</td>
</tr>
<tr>
<td>December</td>
<td>0</td>
<td>200</td>
<td>10</td>
</tr>
</tbody>
</table>
Calls for Service by Priority

Priority 1
Priority 2
Priority 3

December | January | February | March | April | May | June | July | August | September | October | November | December

Graph showing the number of calls for service by priority from December to December, with Priority 1, Priority 2, and Priority 3 represented by different markers and colors.
Council District 1: 224 reports
Council District 2: 111 reports
Council District 3: 115 reports
Council District 4: 85 reports
Overall UCR Crime View

<table>
<thead>
<tr>
<th>Crime Type</th>
<th>December 13</th>
<th>December 14</th>
<th>Year End 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homicide</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Rape</td>
<td>1</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Robbery</td>
<td>0</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Assault</td>
<td>14</td>
<td>12</td>
<td>155</td>
</tr>
<tr>
<td>Burglary</td>
<td>9</td>
<td>8</td>
<td>117</td>
</tr>
<tr>
<td>Theft</td>
<td>57</td>
<td>61</td>
<td>601</td>
</tr>
<tr>
<td>Stolen Auto</td>
<td>6</td>
<td>7</td>
<td>46</td>
</tr>
<tr>
<td>Total</td>
<td>87</td>
<td>89</td>
<td>937</td>
</tr>
</tbody>
</table>
Arrests by Offense

<table>
<thead>
<tr>
<th>Offense</th>
<th>Adult</th>
<th>Juvenile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggravated Assault</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Theft</td>
<td>24</td>
<td>2</td>
</tr>
<tr>
<td>Auto Theft</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Other Assault</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Forgery</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Possession of Stolen Property</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Vandalism</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Weapons Offense</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Sale / Manufacturing of Marijuana</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Sale / Manufacturing of Other Drugs</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>Family Offense</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>DUI</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>Disorderly Conduct</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>All Other</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Run-Aways</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>83</td>
<td>11</td>
</tr>
</tbody>
</table>
Traffic Citations & DUIs

- Traffic Citations
- DUIs
- Warnings
14X006623 RX DUI 23rd Fort
14X006623 other car
COTTONWOOD HEIGHTS

ORDINANCE NO. 235

WHEREAS, the “Municipal Land Use, Development, and Management Act,” Utah Code Ann. §10-9a-101 et seq., as amended (the “Act”), provides that each municipality may enact a land use ordinance and a zoning map establishing regulations for land use and development; and

WHEREAS, pursuant to the Act, the municipality’s planning commission shall prepare and recommend to the municipality’s legislative body, following a public hearing, a proposed land use ordinance and a zoning map, or amendments thereto, that represents the planning commission’s recommendations for zoning the area within the municipality; and

WHEREAS, the Act also provides certain procedures for the municipality’s legislative body to adopt or amend the land use ordinance and zoning map for the City; and

WHEREAS, on 14 July 2005, the city council (the “Council”) of the city of Cottonwood Heights (the “City”) enacted its Ordinance No. 25 adopting a land use ordinance for the City and codifying such ordinance as Title 19 of the City’s code of ordinances (the “Code”); and

WHEREAS, thereafter, the City’s planning commission (the “Planning Commission”) proposed amending the Code (the “Amendments”) by repealing Chapter 19.72 (“Sensitive Lands”) and Chapter 19.75 (“Geological Hazard Areas”) (collectively, the “Old Chapters”) and adopting in their place new Chapter 19.72, entitled “Sensitive Lands Evaluation & Development Standards (SLEDS)” (“SLEDS”); and

WHEREAS, on 3 December 2014 and 7 January 2015, public hearings were held before the Planning Commission, where citizens were given the opportunity to provide written or oral comment concerning the proposed Amendments; and

WHEREAS, such public hearings before the Planning Commission were preceded by all required legal notices; and

WHEREAS, following the public hearings, the Planning Commission recommended the Amendments to the Council for adoption; and

WHEREAS, on 13 January 2015, the Council met in regular meeting to consider, among other things, amending Title 19 of the Code to repeal the Old Chapters and to enact SLEDS in their place, as proposed; and

WHEREAS, the Council has reviewed and is familiar with SLEDS, a copy of which is annexed as an exhibit to this ordinance; and

WHEREAS, after careful consideration of the recommendations of the Planning Commission, comments at the public hearing, and other relevant input, the Council has determined that it is in the best interest of the health, safety and welfare of the citizens of the City to repeal the Old Chapters and to enact SLEDS in their place, as proposed;

NOW, THEREFORE, BE IT ORDAINED by the city council of the city of Cottonwood Heights as follows:
Section 1. **Adoption of Amendments.** The Council hereby repeals the Old Chapters and enacts SLEDS in their place; provided, however, that the Old Chapters shall remain effective for purposes of any complete land use applications which were pending before the City commenced consideration of SLEDS as provided in the “pending ordinance doctrine” under Utah Code Ann. 10-9a-509(1)(a)(ii)(B).

Section 2. **Action of Officers.** All actions of the officers, agents and employees of the City that are in conformity with the purpose and intent of this Ordinance No. 235 (this “Ordinance”), whether taken before or after the adoption hereof, are hereby ratified, confirmed and approved.

Section 3. **Severability.** It is hereby declared that all parts of this Ordinance are severable, and if any section, paragraph, clause or provision of this Ordinance shall, for any reason, be held to be invalid or unenforceable, the invalidity or unenforceability of any such section, paragraph, clause or provision shall not affect the remaining sections, paragraphs, clauses or provisions of this Ordinance.

Section 4. **Repealer.** All ordinances or parts thereof in conflict with this Ordinance are, to the extent of such conflict, hereby repealed.

Section 5. **Effective Date.** This Ordinance, assigned no. 235, shall take immediate effect as soon as it shall be published or posted as required by law and deposited and recorded in the office of the City’s Recorder, or such later date as may be required by Utah statute.

PASSED AND APPROVED this 13th day of January 2015.

COTTONWOOD HEIGHTS CITY COUNCIL

By [Signature]

Kelvyn H. Cullimore, Jr., Mayor

ATTEST:

[Signature]

Kory Solorio, Recorder

VOTING:

Kelvyn H. Cullimore, Jr. Yea / Nay __
Michael L. Shelton Yea / Nay __
J. Scott Bracken Yea / Nay __
Michael J. Peterson Yea / Nay __
Tee W. Tyler Yea / Nay __

DEPOSITED in the Recorder’s office this 13th day of January 2015.

POSTED this 14 day of January 2015.
Chapter 19.72
SENSITIVE LANDS EVALUATION
& DEVELOPMENT STANDARDS (SLEDS)

Sections:
19.72.010 Purpose.
19.72.020 Scope and application.
19.72.030 Definitions.
19.72.040 Design standards and controls.
19.72.050 Responsibility for geologic hazards and other studies.
19.72.060 Minimum acceptable qualifications of professionals.
19.72.070 Procedure.
19.72.080 Geologic hazards study area maps.
19.72.090 Geologic hazard studies and reports required.
19.72.100 Geologic hazard reports.
19.72.110 Review of geologic hazard reports.
19.72.120 Disclosure when a geologic hazard report is required.
19.72.130 Warning and disclaimer.
19.72.140 Change of use.
19.72.150 Conflicting regulations.
Table 1 Essential facilities.

Appendices:
Appendix A Geologic Hazards Study Area Maps:
Map 1: Surface Fault Rupture Hazard Study Area Map.
Map 2: Slope Stability Hazard Study Area Map.
Map 3: Liquefaction Hazard Study Area Map.
Map 4: Debris Flow Hazard Study Area Map.
Map 5: Rockfall Hazard Study Area Map.
Map 6: Floodplain Hazard Map and FIRM Supplemental Maps:
Map 7: 1958 Aerial Photography Map
Map 8: 2006 Aerial Photography Map
Map 9: Topographic Map
Map 10: Surficial Geologic Map
Map 11: Shallow Groundwater Map
Map 12: Water Source Protection Zone Map
Map 13: Water Conveyance Facilities Map

Appendix B Minimum Standards for Surface Fault Rupture Hazard Studies.
Appendix C Minimum Standards for Slope Stability Hazard Studies.
Appendix D Minimum Standards for Liquefaction Hazard Studies.
Appendix E Minimum Standards for Debris Flow Hazard Studies.
Appendix F Minimum Standards for Rock Fall Hazard Studies.
Appendix G Groundwater Source Protection
Appendix H Minimum Standards for Foundation Excavation Observation Reports.
Appendix I Riparian Corridor and Watershed Protection

19.72.010 Purpose.

The city deems it appropriate that sensitive land areas in the city be protected through their inclusion in a sensitive lands district to ensure that development is regulated in a manner that will minimize the potential impact from natural and man-made hazards and will reasonably preserve natural scenic beauty and ecological integrity. To the greatest extent practicable, the objectives to be achieved by the designation of a sensitive lands district include, without limitation, the following:

A. The protection of the public from natural hazards, such as land slide, rock fall, debris flow, earthquake ground rupture, liquefaction, shallow ground water, snow melt/storm water runoff and erosion.

B. The minimization of the threat of and consequential damage from fire in wildland interface areas.

C. The preservation of significant geological features, hydrologic features, wildlife habitat and migration corridors, and open space, including retention of natural topographic features such as drainage channels, streams, ridge lines, rock outcroppings, vistas, trees and other natural geologic and plant formations.

D. The preservation of appropriate public access to mountain areas and natural drainage channels for recreation.

E. The consideration, preservation and enhancement of environmental quality.

F. The master planning of an adequate transportation system for the total hillside area, including consideration of the city’s master plan for streets, trails, bikes and pedestrians and consideration of densities and topography, with minimal cuts, fills, or other visible scars.

G. The use of terrain-adaptive architecture to ensure compatibility with the natural terrain, to preserve natural open spaces and vistas, and to minimize impact from geologically hazardous areas.

H. The placement of building sites in such a manner as to permit ample room for landscaping compatible with the natural vegetation and surface drainage.

I. The requirement that development (1) pay special regard to the view of the hillsides from areas outside the development, and (2) protect such viewsheds to the greatest extent reasonably practicable through terrain-sensitive building practices, increased ridgeline setbacks, use of the natural topography to shield man-made structures from the view of the valley, current best practices for clustering structures, and optimizing setbacks between structures to consolidate the building envelope of a property.

19.72.020 Scope and application.

A. Application.

1. The provisions of this chapter shall apply to all lands in the city located in any area designated as a sensitive lands district on the city’s official maps contained in Appendix A of this chapter. The provisions of this chapter also shall apply to an area outside of a designated sensitive lands district if the director expressly determines in writing before issuance of a building permit, based on competent evidence complying with the requirements of this chapter, that the subject area qualifies as a sensitive area under this chapter. The provisions of this chapter shall not apply to an area within a previously-designated sensitive lands district if, upon analyzing an otherwise compliant development proposal, the director expressly determines in
writing, based on competent evidence, that the proposed development area does not qualify as a sensitive area under this chapter with respect to the proposed site specific development. The city’s official maps shall be amended from time to time by the director to clarify to location of sensitive lands districts in the city, as reasonably deemed appropriate by the director based on competent evidence. Determinations by the director under this subsection shall be made in consultation with the DRC and such other qualified consultants as the director may deem appropriate.

2. All approved subdivision plats that lie wholly or partially in a sensitive lands district shall be recorded with such designation shown on the official plat.

B. Supplemental and Conflicting Provisions. Unless otherwise specifically provided, the regulations contained in this chapter are in addition to the standards applicable to the underlying zones, or overlay zones, provided elsewhere in this title or any other applicable title, code, ordinance or law. In the event of conflict between the standards, guidelines and criteria of this chapter and the requirements of the underlying zoning district, the city’s subdivision ordinance or any other requirements of this code, the more restrictive provision shall apply.

C. Geologic hazard studies. Project developers and their consultants shall present the results of geologic hazard studies in compliance with this chapter and its appendices. The standards set forth in the appendices to this chapter are the city’s minimum requirements, but may be made more stringent (in specific, fact-sensitive circumstances) by the DRC based on recommendations of the city engineer or city geologist if evidence becomes available that suggests more stringent requirements are appropriate. In addition, the appendices shall not supersed other more stringent requirements that may be required by other regulatory agencies or governmental entities that have jurisdiction.

D. Appendix A. Appendix A presents study area maps reflecting geological, hydrologic, infrastructure and other natural and man-made hazard concerns, as well as supplemental maps pertaining to development in the city’s sensitive lands districts. The maps incorporate data obtained from numerous publications, previous geologic hazard studies and other expert sources such as FEMA, UGS, USGS, AGRC, etc. Updated versions of the maps will be added as they become available.

E. Appendix B. Appendix B presents the minimum standards for surface fault rupture hazard studies conducted in the city and describes the accepted minimum requirements for planning, conducting and reporting the results of surface fault rupture hazard studies. Site-specific surface fault rupture hazard studies performed by qualified engineering geologists shall be required prior to developing projects located in the Surface Fault Rupture Hazard Study Area as delineated on Map 1 in Appendix A of this chapter. The information contained in Appendix B was compiled from numerous published and unpublished sources and presents the current standard of care for surface fault rupture hazard studies in the city. The requirements of Appendix B are subject to modification at any time by the city as recommended by the DRC. If, due to additional evidence, a surface fault rupture hazard becomes known or suspected in an area subject to a development application, which hazard is not depicted on the Surface Fault Rupture Hazard Study Area Map, the DRC shall require the developer to submit applicable studies as recommended by the city engineer and the city geologist and the process outlined in this chapter shall be followed.

F. Appendix C. Appendix C presents the minimum standards for slope stability and landslide hazard studies conducted in the city and describes the accepted minimum requirements for planning, conducting and reporting the results of slope stability and landslide hazard studies. Site-specific slope stability and landslide hazard studies performed by qualified engineering
geologists and geotechnical engineers shall be required prior to developing projects located in the Slope Stability and Landslide Hazard Study Area as delineated on Map 2 in Appendix A of this chapter. The information contained in Appendix C was compiled from numerous published and unpublished sources and presents the current standard of care for slope stability and landslide hazard studies in the city. The requirements of Appendix C are subject to modification at any time by the city as recommended by the DRC. If, due to additional evidence, a slope stability and/or landslide hazard becomes known or suspected in an area subject to a development application, which hazard is not depicted on the Slope Stability and Landslide Hazard Study Area Map, the DRC shall require the developer to submit applicable studies as recommended by the city engineer and the city geologist and the process outlined in this chapter shall be followed. At a minimum, a special, site-specific slope stability analysis is required for all development in zones with moderate to very high hazard of landslides (Map 2).

G. Appendix D. Appendix D presents the minimum standards for liquefaction hazard studies conducted in the city and describes the accepted minimum requirements for planning, conducting and reporting the results of liquefaction hazard studies. Site-specific liquefaction hazard studies performed by qualified engineering geologists and geotechnical engineers shall be required prior to developing projects located in the Liquefaction Hazard Study Area as delineated on Map 3 in Appendix A of this chapter. The information contained in Appendix D was compiled from numerous published and unpublished sources and presents the current standard of care for liquefaction hazard studies in the city. The requirements of Appendix D can be modified at any time by the city as recommended by the DRC. If, due to additional evidence, a liquefaction hazard becomes known or suspected in an area subject to a development application, which hazard is not depicted on the Liquefaction Hazard Study Area Map, the DRC shall require the developer to submit applicable studies as recommended by the city engineer and the city geologist and the process outlined in this chapter shall be followed. At a minimum, a special, site-specific liquefaction hazard analysis is required for all development in zones of moderate to high liquefaction potential (Map 3) for the following International Building Code (IBC) occupancy groups: Assembly Group A, Business Group B, Factory Group F-1, Educational Group E, High-Hazard Group H, Institutional Group I, and Residential Groups R-1, R-2, and R-4.

H. Appendix E. Appendix E presents the minimum standards for debris flow/alluvial fan flooding hazard studies conducted in the city and describes the accepted minimum requirements for planning, conducting and reporting the results of debris flow/alluvial fan flooding hazard studies. Site-specific debris flow/alluvial fan flooding hazard studies performed by qualified engineering geologists and geotechnical engineers shall be required prior to developing projects located in the Debris Flow/Alluvial Fan Flooding Hazard Study Area as delineated on Map 4 in Appendix A of this chapter. The information contained in Appendix E was compiled from numerous published and unpublished sources and presents the current standard of care for debris flow/alluvial fan flooding hazard studies in the city. The requirements of Appendix E can be modified at any time by the city as recommended by the DRC. If, due to additional evidence, a debris flow/alluvial fan flooding hazard becomes known or suspected in an area subject to a development application, which hazard is not depicted on the Debris Flow/Alluvial Fan Flooding Hazard Study Area Map, the DRC shall require the developer to submit applicable studies as recommended by the city engineer and the city geologist and the process outlined in this chapter shall be followed. At a minimum, a special, site-specific debris flow/alluvial fan flooding hazard
analysis is required for all development in zones with moderate to high debris flow/alluvial fan flooding hazard (Map 4).

I. Appendix F. Appendix F presents the minimum standards for rockfall hazard studies conducted in the city and describes the accepted minimum requirements for planning, conducting and reporting the results of rockfall hazard studies. Site-specific rockfall hazard studies performed by qualified engineering geologists and geotechnical engineers shall be required prior to developing projects located in the Rockfall Hazard Study Area as delineated on Map 5 in Appendix A of this chapter. The information contained in Appendix F was compiled from numerous published and unpublished sources and presents the current standard of care for rockfall hazard studies in the city. The requirements of Appendix F can be modified at any time by the city as recommended by the DRC. If, due to additional evidence, a rockfall hazard becomes known or suspected in an area subject to a development application, which hazard is not depicted on the Rockfall Hazard Study Area Map, the DRC shall require the developer to submit applicable studies as recommended by the city engineer and the city geologist and the process outlined in this chapter shall be followed. At a minimum, a special, site-specific rockfall hazard analysis is required for all development in zones with moderate to high rockfall hazard (Map 5).

J. Appendix G. Appendix G presents the source protection zones that require special regulations for the storage, handling, use or production of hazardous or toxic substances in order to protect, preserve and maintain existing and future public drinking water sources. The source protection zones are generally located upgradient of wells or near proposed points of diversion for the development of groundwater. Groundwater recharge zones are located in permeable and/or sensitive areas that have a critical impact on the groundwater quality and quantity of supply. The protection of source protection zones and groundwater recharge areas is essential to the health, safety and welfare of city residents and visitors. At a minimum, observations of excavations will be required in the following instances:

1. Observations of excavations by qualified engineers and/or geologists for all development within active fault special study zones (Map 1), areas with moderate to very high slope stability hazard (Map 2), areas with moderate to high liquefaction potential (Map 3), and areas with groundwater at depths of less than ten feet (Map 11).

2. Observations of excavations by qualified engineers and/or geologists for all development, even outside of the zones specified above, for the following IBC occupancy groups: Assembly Group A, Educational Group E, High-Hazard Group H, Institutional Group I, and Residential Groups R-1, R-2, and R-4.

K. Appendix H. Appendix H presents the foundation excavation observations that are required for all new structures or additions that are built in the city. The DRC shall require the owner to submit a foundation excavation observation report, prepared in accordance with the process outlined in this chapter, prior to the construction of any structural footing or foundation for all buildings in the city.

L. Appendix I. Appendix I presents the riparian corridor and watershed protections adopted to minimize erosion and stabilize stream banks, improve water quality, preserve fish and wildlife habitat, regulate stream temperatures, reduce potential for flood damage, preserve natural aesthetic value of streams and protect the prime groundwater recharge areas of the city. These requirements are intended to provide protection for the following above-ground streams, stream corridors and recharge areas: Little Cottonwood Creek and its tributaries, Big Cottonwood Creek and its tributaries, foothill drainage basins and Ferguson Canyon. Where these streams flow
through areas that are already developed, the riparian corridor and watershed protection requirements are intended to achieve a reasonable balance between natural streams and developed land uses.

19.72.030 Definitions.

As used in this chapter:

"Acceptable and reasonable risk" means no loss of or significant injury to occupants, no release of hazardous or toxic substances, and structural damage but no collapse of structures.

"Accessory building" means any structure not designed for human occupancy, which may include detached garages with no habitable space, tool or storage sheds, gazebos, and swimming pools.

"Active fault" means a fault displaying evidence of displacement along one or more of its traces during Holocene time, which is approximately 10,000 years ago to the present.

"AGRC" means the Utah State Automated Geographic Reference Center.

"Avalanche" means a large mass of snow, ice, soil or rock, or a mixture of these materials, falling, sliding, or flowing rapidly down a hillside or mountainside under the force of gravity.

"Buildable area" means that, based on an accepted engineering geology report, the portion of a site not impacted by geologic hazards, or the portion of a site where it is concluded the identified geologic hazards can be mitigated to a level where risk to human life, property and city infrastructure is minimized and where structures may be safely sited.

"City" means the city of Cottonwood Heights and its public works director, city engineer, community development director, planning manager, building official, or other Cottonwood Heights officer or employee, as applicable.

"City council" means the Cottonwood Heights city council.

"Cluster development" means development in which a number of dwelling units are placed in closer proximity than usual, or are attached, with the purpose of retaining or enlarging an open space area.

"Community development department" means the city’s community and economic development department.

"Conservation area" means an area that has high open space value for recreation, aesthetic and/or biological purposes. Conservation areas have the highest priority of protection from development.

"Critical facilities" means essential, hazardous, special occupancy facilities, and Occupancy Categories III and IV as defined in the currently adopted International Building Code, and lifelines such as major utility, transportation, and communication facilities and their connections to critical facilities.

"Curriculum vitae" or "CV" means means a written account of the professional life comprising one’s education, accomplishments, work experience, publications, etc.

"Debris flow" means a slurry of rock, soil, organic material, and water transported in an extremely fast and destructive flow down channels and onto and across alluvial fans; including a continuum of sedimentation events and processes such as debris flows, debris floods, mudflows, clear-water floods, and alluvial-fan flooding.

"Development" means all critical facilities, subdivisions, single- and multi-family dwellings, commercial and industrial buildings; also additions to or intensification of existing buildings, storage facilities, pipelines and utility conveyances, and other land uses.
“Development review committee” or “DRC” means a committee of city staff members that reviews proposed development projects for compliance with this code, consisting of the director and others designated from time to time by the director and approved by the city council, such as the city engineer, one or more of city planning staff members, the city’s fire inspector, a representative of the city’s public works provider, the city attorney, and/or others.

“Director” means the director of the city’s community and economic development department.

“Engineering geologist” or “geologist” means a Utah-licensed geologist, who, through education, training, and experience, is competent in applying geologic data, geologic techniques, and geologic principles, which includes conducting field investigations, so that geologic conditions and geologic factors affecting engineered works, ground-water resources, and land-use planning are recognized, adequately interpreted, and clearly presented for use in engineering practice, land use planning, and for the protection of the public, and who utilizes specialized geologic training and experience to provide quantitative geologic information and recommendations and also works with and for land-use planners, environmental specialists, architects, public policy makers, and property owners to provide geologic information on which decisions can be made.

“Engineering geology” means geologic work that is relevant to engineering and environmental concerns, and the public health, safety, and welfare. Engineering geology is the application of geological data, principles and interpretation so that geological factors affecting planning, design, construction, and maintenance of engineered works, land use planning and ground-water resources are adequately recognized and properly interpreted for use in engineering, land-use planning, and related practice.

“Essential facility” means buildings and other structures intended to remain operational in the event of an adverse catastrophic event, including all structures defined in Table 1.

“Fault” means a fracture in the earth's crust forming a boundary between rock or soil masses that have moved relative to each other.

“Fault setback” means an area on either side of a fault within which structures for human occupancy or critical facilities or their structural supports are not permitted.

“Fault scarp” means a steep slope or cliff formed by movement along a fault.

“Fault trace” means the intersection of a fault plane with the ground surface, often present as a fault scarp, or detected as a lineament on aerial photographs.

“Fault zone” means a corridor of variable width along one or more fault traces, within which deformation of soil and rock units has occurred due to movement of the fault trace.

“Geologic hazard” means a surface fault rupture, liquefaction, slope instability, landslide, debris-flow, rock-fall, or other geologic process or condition that may present a risk to life or property.

“Geologic hazard study area” means a potentially hazardous area as shown on the geologic hazard study area maps within which hazard investigations are required prior to development.

“Geotechnical engineer” means a professional, Utah-licensed engineer who, through education, training and experience, is competent in the field of geotechnical engineering.

“Geotechnical engineering” means the investigation and engineering evaluation of earth materials including soil, rock, and man-made materials and their interaction with earth retention systems, foundations, and other civil engineering works. The practice involves the fields of soil
mechanics, rock mechanics, and earth sciences and requires knowledge of engineering laws, formulas, construction techniques, and performance evaluation of engineering.

“Governing body” means the city council or its designee.

“Improvement” means any building, structure, fence, gate, wall, landscaping, planted tree, work of art, or other man-made physical feature of real property, or any part of such feature which is not a natural feature.

“Landslide” means the down-slope movement of a mass of soil or bedrock, including a continuum of processes between landslides, earth-flows, debris flows and debris avalanches, and rock falls.

“Liquefaction” means a process by which certain water-saturated soils lose bearing strength because of earthquake-related ground shaking and subsequent increase of groundwater pore pressure.

“Natural drainage channel” means naturally occurring features such as open swales, open channels, or open creek beds that help collect and convey stormwater over natural terrain to a determinate downstream point of discharge.

“Natural feature” means any naturally-occurring tree, plant life, habitat, or geological site or feature, but does not include improvements.

“Non-buildable area” means a site that has any portion thereof within a geologic special study area where a geologic hazards investigation has not been conducted, a site where known or readily apparent geologic hazards exist in an area subject to a development application, which area is not depicted on the geologic hazards study area where a geologic hazards investigation has not been conducted, or that portion of a site which a geologic hazards report has concluded may be impacted by geologic hazards that cannot be reasonably mitigated to an acceptable level, and where the siting of habitable structures, structures requiring a building permit, or critical facilities, is not permitted.

“Open space” means those areas of a subdivision, planned unit development, condominium or other type of land use project that are not occupied by structures, paved parking areas, paved roadways, or similar improvements. Open space is contiguous land set aside for environmental protection and/or passive or active recreation purposes, or to preserve environmentally sensitive or riparian areas. Open space may include parkland, play areas, walkways, trails, interpretive centers or similar facilities for active or passive use, and may be private, communal, or a combination thereof. Open space may be formally landscaped or retained with natural vegetation.

“Retention area” means an area that is designed to catch runoff water.

“Rocksfall” means a rock or mass of rock, newly detached from a cliff or other steep slope which moves down-slope by falling, rolling, toppling, or bouncing; includes rockslides, rock-fall and rock avalanches.

“Sensitive development” means any land use that maintains the character of the native landscape and natural or cultural resources that define the area.

“Sensitive lands” or “sensitive area” means retention areas, conservation areas, and any other land within a sensitive lands district or which qualifies for inclusion in a sensitive lands district as provided in this chapter.

“Sensitive lands district” or “sensitive lands overlay” means any designated overlay area published on an official map by the city which describes a sensitive area or special study zones. The sensitive lands district or overlay identifies properties that require additional study to determine the existence of geologic conditions that may be hazardous to public health, safety or
welfare. An official sensitive lands overlay map, as shown in Appendix A, shall be approved by the city council and shall be on record with the city. Sensitive lands overlay maps may also be available on the web at the city's official website.

“Setback” means an area within which foundation elements that support habitable structures or critical facilities is not permitted.

“Slope stability” means the resistance of a natural or artificial slope or other inclined surface to failure by sliding, usually assessed under both static and dynamic (earthquake-induced) conditions.

“Snow avalanche” means a mass of predominantly snow and ice, but also including a mixture of soil or rock and organic debris, falling, sliding, and/or flowing rapidly down a hillside or mountainside under the force of gravity.

“Special study zone” refers to an area within the vicinity of a potential or known fault zone(s) that warrant study to determine the feasibility of development in compliance with the regulations as outlined in Appendix B.

“Standard of care” meant that a professional such as an architect, a landscape architect, an engineer, a geologist, or a land surveyor is required to use the same degree of learning, care and skill ordinarily used by other professionals of the same type, under like circumstances, in the same or similar locality as where the subject professional services were provided.

“Structure designed for human occupancy” means any residential dwelling or any other structure used or intended for supporting or sheltering any use or occupancy which is expected to have an occupancy rate of at least 2,000 person hours per year.

“SWPPP” means a storm water pollution prevention plan, conducted in accordance with appropriate standards, as determined by the city and the Utah Pollutant Discharge Elimination System (UPDES).

“Terrain adaptive architecture” means a system of architectural design where buildings step down steeply sloping sites and hillsides to create the least amount of visual impact from lower lying vantage points.

“Talus” means rock fragments lying at the base of a cliff or a very steep rocky slope.

“Trail” means a system of public recreational pathways located within the city for use by the public.

“UGS” means the Utah Geological Survey.

“Unpublished sources” means maps, documents, consultant’s reports or other data produced by credible scientific or professionally licensed individuals or entities that have not been published in publicly or generally available formats.

“USGS” means the United States Geological Survey.

“Wet stamp” or “seal” means the official hallmark of an engineer, surveyor or other licensed professional that is reproduced, via ink or embossing, on plans, plats, studies or the like prepared by such professional or under his direction, to prove its authenticity and/or to confirm its accuracy.

19.72.040 Development standards and controls.

Compliance with the development standards and controls of this chapter shall be required in connection with all structures and construction on sensitive lands; provided, however, that the development standards and controls contained in this chapter shall not circumvent or diminish the zoning controls of underlying zoning designations. Instead, the development standards and
controls in this chapter are intended to, and shall, enhance the city’s regulatory control regarding building and development surrounding and within sensitive lands.

A. **Slopes.** Slope areas in excess of 30% may not be developed, and no more than 30% of a development’s slope areas in excess of 30% may be included in the area calculation to determine residential density. The planning commission, upon analyzing a conditional use application or other land use proposal following a recommendation of the DRC, may modify this requirement to include no more than 50% of the slope in excess of 30% toward density calculations upon finding that:

1. No significant or moderate harm will result;
2. The proposed modification will result in a materially more functional and improved plan;
3. Conditions or requirements are reasonably imposed by the planning commission to mitigate any adverse effects which may result from the proposed modification; and
4. If reasonably requested by the city in compliance with applicable legal standards for, *inter alia*, development exactions, the developer agrees to dedicate as open space any portion of the project that is not developable under this title.

B. **Single Family Lots.** For developments containing single family lots, the minimum lot size and yard requirements of the underlying zone shall apply, with the following exceptions:

1. Every lot shall have at least 3,500 square feet of buildable area, consisting of the area of the lot where the slope is 30% or less, which is completely contiguous and which has a minimum dimension of 50 feet.
2. Lots shall be designed to allow dwelling units to be located within 250 feet from a public street. All main and accessory buildings shall be built entirely within the buildable area.

C. **Density Limitations.**

1. The density limitations of the underlying zoning district shall control residential density.
2. The planning commission shall not adjust other zoning controls related to bulk and massing, including increased maximum structure height.

D. **Maximum Impervious Surface.** The total maximum allowable coverage by impervious material within the sensitive lands portion of a project shall not exceed 30% of the area of those sensitive lands. Areas of roofs and private driveways will be estimated and included in the total impervious surface area.

E. **Grading, drainage, and erosion control.** The area of the watershed shall be used to determine the amount of storm water runoff generated before and after construction.

1. A grading and drainage report shall be prepared in which the developer shall describe the methods intended to be employed to control the erosion increase while in construction.
2. The developer is responsible for interim stabilization of all disturbed areas during periods of construction to prevent erosion offsite effects, and for final stabilization once construction is completed.
3. The SCS, Curve Number Method, or Rational Method, or other storm water computation method as approved by the city engineer, shall be used in computing runoff.
4. Lots shall be arranged so as to ensure adequate setbacks from drainage channels. The 100-year storm event shall be that basis for determining the minimum flood elevation.
5. Existing natural drainage channels shall remain as historically located except that roads and utilities may be installed across such channels as approved by the city engineer. Where these channel modifications are planned, the developer shall obtain applicable state Division of Water Rights and U.S. Army Corps of Engineers permits. The developer shall provide evidence of such permits to the city.
6. Facilities for the collection of storm water runoff shall be constructed on the development sites and according to the following requirements:
 (a) Such facilities shall be the first improvements or facilities constructed on the development site.
 (b) Such facilities shall be designed so as to detain safely and adequately the maximum expected storm water runoff for a 100-year storm event while allowing an offsite discharge not to exceed one tenth (0.1) cubic foot per second per acre.
 (c) Such facilities shall be so designed so as to divert surface water away from cut faces or sloping surfaces of a fill.
 (d) The existing drainage system, including natural drainage channels, shall be utilized to the greatest extent practicable, as directed by the city engineer.
 (e) Where drainage channels are required, wide shallow swales lined with appropriate vegetation, rock, or other approved material shall be used instead of cutting narrow, deep drainage ditches. Flow retarding devices, such as detention ponds, check dams, and recharge berms, shall be used where practical to minimize increases in runoff volume and peak flow rate due to development.

7. Construction on a development site shall be of a nature that will minimize the disturbance of vegetative cover.

8. Erosion control measures on a development site shall minimize increased suspended solids loading in runoff from such areas. A drainage system design to control storm water erosion during and after construction shall be contained in a detailed grading and drainage report submitted by the developer.

9. No grading or stripping shall be permitted except as part of a development plan approved in advance by the DRC pursuant to this chapter.

F. Cut and Fill Slopes. Cut and fill slopes shall comply with the following unless otherwise recommended in an approved soils and geology report:
 1. Cut and fill slopes shall not exceed 12 feet.
 2. Cut and fill slopes shall not exceed a slope ratio of 2:1 except as follows:
 (a) No slopes shall be cut steeper than the bedding plane, fracture, fault or joint in any formation where the cut slope will lie on the dip of the strike line of the fracture, bedding plane, fault or joint.
 (b) No slopes shall be cut in an existing landslide, mud flow or other form of naturally unstable slope.
 (c) If the material of a slope is of such composition and character as to be unstable under the anticipated maximum moisture conditions, the slope angle shall be reduced to a stable value or increased through retention using a method approved by the city engineer and certified as to its stability by a professional soils engineer.
 3. Fill slopes shall not be constructed on natural slopes steeper than 2:1.
 4. Roadway cut and fill slopes located outside the dedicated public right-of-way shall be within recorded easements providing for slope protection and preservation. The easements shall be in a form acceptable to the city.

G. Earthwork.
 1. All surface areas to receive fill shall be stripped of any surface vegetation, topsoil, and organics and cleared of any trash and debris that may be present at the time of construction.
 2. After the site has been cleared and stripped, the exposed subgrade soils in those areas to receive fill shall be scarified to a depth of eight inches.
3. All fill material shall be earth materials that are free from organic material, (less than 30% by volume) and other deleterious materials as well as free of metal, concrete, asphalt and other construction debris. Imported fill material should be a non-expansive (less than 2% swell) granular materials and should not contain rocks or lumps over 6-inches in greatest dimension and not more than 15% of the material larger than 2½ inches.

4. Surface areas disturbed by trench excavations shall be contained within the limits of the development or within approved rights-of-way, except as may be necessary in order to comply with Occupational Safety and Health Administration requirements and as approved by the city engineer. Trench boxes shall be used whenever required to ensure compliance with this requirement.

5. The following compaction criteria shall be met for filling operations based on ASTM test designation 698-78:

<table>
<thead>
<tr>
<th>Description</th>
<th>Compaction Effort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subgrade</td>
<td>95%</td>
</tr>
<tr>
<td>Structural fill</td>
<td>97%</td>
</tr>
<tr>
<td>Trench backfill</td>
<td>95%</td>
</tr>
<tr>
<td>Trench backfill (top 12-inches</td>
<td></td>
</tr>
<tr>
<td>beneath pavement or concrete)</td>
<td>97%</td>
</tr>
<tr>
<td>Basement wall backfill</td>
<td>90%</td>
</tr>
</tbody>
</table>

Fill material shall be spread and compacted in uniform horizontal lifts not exceeding eight inches in uncompacted thickness. Before compaction begins, the fill shall be brought to within 2% +/- of the optimum moisture content. Each lift should be thoroughly mixed before compaction to ensure a uniform distribution of moisture.

6. All structures shall bear on well compacted fill material or firm, undisturbed natural soil. No organic material, mud, muck, frozen material or ponded water shall be allowed in the footing foundation.

7. A written summary report of the completed compaction, showing location and depth of tests, materials used, moisture-density curves, moisture contents and relative density (if appropriate), prepared by a civil engineer, geotechnical engineer, or soils engineer shall be submitted to the city engineer for review.

8. The city engineer may require additional tests or information if the results of his review indicate that the conditions or materials are such that additional information is necessary.

H. **Setbacks.** The setbacks and other restrictions specified by this subsection are a minimum, and may be increased by the city if necessary for safety and stability, to prevent damage of adjacent properties from deposition or erosion, or to provide access for slope maintenance and drainage. Setbacks dealing with distances from property lines, structures or faults, and must satisfy the requirements of the following paragraphs. Retaining walls may be used to reduce the required setbacks when approved by the city.

1. Setbacks from property lines shall comply with most restrictive requirements that are applicable under this title and the city’s building code.

2. Setbacks between graded slopes (cut or fill) and structures shall comply with this title, the city’s building code and all other applicable ordinances.
3. No habitable structure, essential facility or critical facility shall be located over a fault. Determinations of the appropriate setback distance from the fault shall be made using data obtained in the geological report by the person or firm who prepared the geological report, but in no case shall this distance be less than 20 feet.

1. Vegetation and Re-vegetation.
 1. All areas on development sites cleared of natural vegetation in the course of construction of offsite improvements shall be replanted with drought tolerant vegetation which has good erosion control characteristics.
 2. The use of persons or firms having expertise in the practice of re-vegetation (i.e., licensed landscape architects, erosion control specialists or nurserymen) shall approve the planning and installation of vegetative cover.
 3. Vegetation shall be removed only when absolutely necessary, e.g., for the construction of buildings, roads and filled areas.
 4. No vegetation shall be removed on a continuous hillside, crest (upslope or downslope) or a slope 30% or greater unless otherwise determined by the planning commission upon recommendation of the DRC.
 5. Any re-vegetation method of a trail, open space or hillside shall be subject to the approval of the city engineer.
 6. Topsoil removed during construction shall be conserved whenever practicable for later use on areas requiring vegetation or landscaping (i.e., cut and fill slopes).
 7. All disturbed soil surfaces shall be stabilized or covered prior to November 1st. If the planned impervious surfaces (i.e., road, driveways, etc.) cannot be established prior to November 1st, a temporary treatment adequate to prevent erosion shall be installed on those surfaces.
 8. The property owner and/or developer shall be fully responsible for any destruction of native or applied vegetation identified as necessary for retention and shall be responsible for such destroyed vegetation. They shall carry the responsibility both for employees and subcontractors from the first day of construction until the final acceptance of improvements. The property owner and developer shall replace all destroyed vegetation with varieties of vegetation approved by the DRC. The property owner shall assume co-responsibility with the developer upon purchase of the property.

J. Geology.
 1. No habitable structure or critical or essential infrastructure shall be built on or within 20 feet of any identified fault. Actual setbacks shall be determined through the process outlined in Appendix B.
 2. No structures or off-site improvements shall be allowed on any active landslide area area as determined by the City Engineer.
 3. Problems associated with development on or near perched ground water and/or shallow ground water must be mitigated in a manner as approved by the planning commission.

K. Fire Protection.
 1. A full building permit shall be issued only when the water system is completed and operational to provide fire protection.
 2. Each development site proposal and building permit application shall be reviewed by the fire department to assure compliance with the city’s fire code. Non-compliant developments shall not be approved.
 3. Spark arresters shall be installed in every fireplace, whether constructed indoor or outdoor. The diameter of screen openings in such arresters shall not exceed ¼ inch.
4. Development adjacent to public lands shall provide access for fire protection vehicles and equipment.

5. A development in a sensitive lands district shall not require the use of wood shake shingles or wood exterior siding, regardless of whether or not such materials have been treated with fire retardant.

I. Streets and Ways. Streets, roadways, and private access ways shall follow as nearly as possible the natural terrain. The following additional standards shall apply:

1. At least one ingress and egress route shall be provided for each subdivision or PUD project, unless there is a crash gate or the extension of a future stub street that will provide additional access.

2. Points of access shall be provided to all developed and undeveloped areas for emergency and fire-fighting equipment. Driveways located upon each lot extending from a public or private street shall have sufficient width and design to admit and accommodate fire-fighting equipment and must comply with all applicable city standards.

3. Cul-de-sacs shall not exceed 600 feet in length and shall have a fire-department-approved turnaround with a back of curb line radius of at least 55 feet. Stub-streets that are longer than the width or length of any adjacent single lot or 200 feet, whichever is less, shall have a temporary turnaround at the end thereof.

4. Centerline curvatures shall not be less than a 100 foot radius on any curved street pattern.

5. Variations of the street design standards developed to solve special hillside visual and functional problems may be presented to the planning commission for consideration and approval. Examples of such variations may be the use of split roadways to avoid deep cuts, one-way streets, modifications of surface drainage treatments, sidewalk design, or the extension of a cul-de-sac.

6. Development sites which are located near canyon trails will provide public access to those trails. Public parking areas may be required by the planning commission at trail heads.

7. Developments adjacent to public lands shall provide for access to those public lands by fire protection equipment.

8. The maximum amount of impervious surface for streets and roadways shall be 20% of the entire development site, or shall follow more stringent recommendations of the city engineer and/or city geologist, reviewed on a case by case basis.

9. All streets or rights-of-way for vehicular traffic shall be subject to the following limitations:

(a) The maximum grade of such streets or rights-of-way shall be 12% except as hereafter provided.

(b) The provisions of this subsection shall not apply to streets or rights-of-way already constructed or which have heretofore been granted preliminary approval by the planning commission.

(c) Roads shall be designed to meet the city’s road base, asphalt and compaction standards.

M. Trails upon hillsides.

1. The subdivider or other developer shall dedicate and improve to city standards trails necessary to provide public access to public lands and other trails shown on city or county master plans or required by the planning commission. Trails shall be located so that the route is feasible for both construction and long-term maintenance; side slopes shall not exceed 70% and rock cliffs and other insurmountable physical obstructions shall be avoided. The specific location of the trail right-of-way shall be verified on the ground before approving the subdivision.
2. A trail may be constructed to access upper/lower portions of residential property subject to the following conditions:

(a) No un-engineered cut or fill of the hillside shall be in excess of four feet. All cuts or fills shall be properly retained.

(b) The trail shall follow a meandering course, and not use a direct line pathway to the desired location. Where possible, the trail should follow the natural contours of the hillside.

(c) Where topographic conditions allow, the grade of trails generally shall not exceed 12%. Trails and retainage of adjacent slopes, shall be designed as directed by the city engineer.

(d) New trails shall be planned to harmonize with nature, including minimizing the destruction of existing stands of vegetation.

(e) New trails shall include the installation of bridges across natural drainages with permanent or temporary flow that cannot be crossed without entering the drainage.

(f) The trail shall be appropriately landscaped with native materials.

(g) Prior to construction and/or hillside cuts, the trail plan shall be submitted to the director and city engineer for review and approval.

N. Architectural Design. Architectural controls are primarily regulated by underlying zoning districts; however, the architectural requirements of this chapter include the following as determined by the city’s architectural review commission (“ARC”) and planning commission:

1. The design of buildings and structures proposed for construction shall be visually compatible with the natural beauty of the foothills and canyon areas and other surrounding sensitive lands.

2. The materials used for buildings, structures and fences shall blend harmoniously with the natural setting.

3. The planning commission may review the design and comment on the specified exterior materials and colors for all structures.

4. Exposed foundation walls shall not exceed four feet above finished grade at any point.

5. The design and construction of structures within the urban interface area shall be consistent with the 2006 Utah Wildland-Urban Interface Code, as amended.

O. On-Site Development. The property owner and developer shall be fully responsible for making all improvements in accordance with the development site approval, e.g., drainage, erosion and vegetation requirements.

P. Bond. In addition to the requirements of this code requiring the posting of a completion bond for a development, the developer or owner shall be required to guarantee (via a cash bond, cash escrow or bank letter of credit, all in such form as city may require) the completion of re-vegetation projects, the stabilization of grading sites, cuts and fills, construction of storm water runoff facilities, and the construction of recreation space as required in this code. Such bond shall be in an amount equal to 110% of the city’s estimate of the cost of construction of such work, and shall continue for 12 months after the completion date of all such project, improvements or facilities.

Q. FEMA. All habitable living space for new construction shall be at least one foot above the 100-year flood plain elevation. Any addition to an existing structure that includes any additional square feet shall meet this requirement.

R. Protection of Subsurface Infrastructure. All new utilities or existing facilities located within a proposed subdivision and that cross a major fault or located in areas that are prone to ground shifting shall be equipped with a flexible expansion joint that is capable of withstanding the maximum anticipated offset as a result of settling or seismic displacement as required by the
city. The flexible expansion joint shall be an integrated cast ball and socket type joint with expansion sleeves and have a minimum 2:1 safety factor with a 350 psi pressure rating and meet USA factory certifications, as per the city engineer.

19.72.050 Responsibility for geologic hazard and other studies.

A. All applicants wishing to develop and/or build on sensitive lands shall provide, at their own expense, all applicable geologic, geotechnical or other studies outlined in this chapter and as directed by the DRC pursuant to section 19.72.020.

B. Geologic hazard studies often require both engineering geology and geotechnical engineering expertise. Engineering geologic studies shall be performed under the direct supervision of a licensed engineering geologist qualified as provided in section 19.72.060, and geotechnical engineering studies shall be performed under the direct supervision of a licensed geotechnical engineer qualified as provided in section 19.72.060. All plans submitted to the city shall be stamped by a licensed geotechnical engineer and/or engineering geologist, as the case and standard of care may warrant, appropriately licensed and in good standing with the state of Utah.

C. When analyzing a conditional use application or other land use proposal, the DRC, or the planning commission upon recommendation of the DRC, may, based on an initial geologic and/or geotechnical study, from time to time require that additional studies related to the sensitive lands being developed be completed to address issues that may include, without limitation, hydrology, wildlife habitat, ecology, etc. All additional studies shall be completed by a city-approved expert in the particular field of study.

19.72.060 Minimum acceptable qualifications of professionals.

A. Minimum acceptable qualifications of the engineering geologist. Engineering geology and the evaluation of geologic hazards is a specialized discipline within the practice of geology requiring technical expertise and knowledge of techniques not commonly used in other geologic disciplines. Therefore, geologic hazard investigations involving engineering geologic studies shall only be accepted by the city when conducted, signed and stamped by a qualified engineering geologist. The minimum qualifications of the engineering geologist who performs geologic hazard investigations of sensitive lands in the city are:

1. An active, current Utah State Professional Geologist's license.
2. In good standing with the Division of Professional and Occupational Licensing of the Utah Department of Commerce.
3. Demonstrated competence in the specified field as evidenced by a current CV provided to the city for review and approval.

B. Minimum acceptable qualifications of a geotechnical engineer. Evaluation and mitigation of geologic hazards often require contributions from a qualified geotechnical engineer, particularly in the design of mitigation measures. Geotechnical engineering is a specialized discipline within the practice of civil engineering requiring technical expertise in geotechnical engineering. Therefore, geologic hazard investigations requiring contributions from a qualified geotechnical engineer will only be accepted by the city when also conducted, signed and stamped by a qualified geotechnical engineer. Minimum qualifications of a geotechnical engineer who participates in geologic hazard investigations of sensitive lands in the city are:

1. An active, current Utah State Professional Engineer's license.
2. In good standing with the Division of Professional and Occupational Licensing of the Utah Department of Commerce.
3. Demonstrated competence in the specified field as evidenced by a current CV provided to the city for review and approval.

C. Minimum acceptable qualifications of other professionals. From time to time the DRC, or the planning commission upon recommendation of the DRC, may require additional studies to evaluate issues that may include, but are not limited to hydrology, wildlife habitat, ecology, vegetation, etc. The DRC shall determine the adequacy of the qualifications of professionals performing additional studies based upon the following minimum standards:

1. An active, current Utah State professional license in the specified field and in good standing with the Division of Professional and Occupational Licensing of the Utah Department of Commerce; or,

2. Demonstrated competence in the specified field as evidenced by a current CV provided to the city for review and approval, showing extensive study in the specified field, experience performing the specified studies and professional competence; and

3. Professional certification obtained through a reputable national organization such as LEED, AIA, AICP, ASLA or other applicable equivalent.

19.72.070 Procedure.

Proposals for building or development on sensitive lands shall follow the procedure set forth in this section, which shall consist of four distinct parts: (1) scoping study; (2) conceptual proposal/disturbance permit request; (3) preliminary proposal; and (4) final approval. Applications for review by the city shall be filed and processed in the following order:

A. Scoping pre-application meeting. The developer or consultant shall schedule a scoping pre-application meeting with the DRC to evaluate the investigative approach of the engineering geologist/geotechnical engineer. At this meeting, the consultant shall present a work plan that includes locations of anticipated geologic hazards and locations of proposed exploratory excavations, such as trenches, borings, and CPT soundings, which meet the minimum standards of practice. The investigation approach should allow for flexibility due to unexpected site conditions. Field findings may require modifications to the work plan. Upon successful completion of the scoping meeting, an application for a disturbance permit may be submitted to the city.

B. Conceptual proposal/disturbance permit applications.

1. Proposals for surveying, testing or other design-related activities requiring physical entry into areas located within a sensitive lands district shall be submitted to the DRC for review and modification, approval or denial. Prior to review by the DRC, the areas of proposed disturbance shall be staked at the applicant’s expense. Following staking, the city engineer or city geologist shall have at least two business days to observe the staking.

2. Thereafter, the DRC, upon receiving a favorable recommendation from the city engineer and geologist, may authorize issuance of a grading permit to allow access to, and permit testing of, the approved areas.

3. The permit shall be limited to the staked area of proposed disturbance and may include conditions deemed appropriate by the DRC to protect sensitive areas. As dictated by the DRC, such conditions may include requirements for the following:

 (a) Photo documentation to identify pre-existing types and general locations of vegetation which may need to be protected or replaced.

 (b) The submission of a SWPPP for the implementation of adequate erosion control measures to protect affected areas. Supplemental erosion control measures may also be required.
between initial disturbances and either construction of permanent improvements or restoration and re-vegetation of the disturbed area.

(c) Limitations on cuts and fills to ensure that they are made only where necessary to obtain access for required testing.

(d) Requirements for restoration and re-vegetation of disturbed areas where permanent improvements are not constructed within one year following the disturbance.

(e) A land disturbance bond (cash bond, cash escrow or bank letter of credit, all in such form as city may require) to cover the expense of re-vegetating disturbed areas and returning graded areas to their natural state.

(f) Any other reasonable requirement to mitigate the effect of potential interruption caused by the disturbance of the area for conceptual or preliminary activities.

4. The conceptual plan shall include the following information; provided, however, that the DRC may reasonably modify the following requirements:

(a) A conceptual development map, drawn at a minimum scale of 1"=100', which shows:

(i) One or two foot contours;

(ii) Natural slopes of 30% or greater color shaded;

(iii) Proposed development layout of lots, roads, schools, churches, parks, open space, fire stations, commercial, cut or fill slopes or areas of disturbance, and any other proposed land use;

(iv) Labeling of any roads with grades in excess of eight percent; and

(v) Native vegetation, by type and location.

(b) A report which indicates:

(i) Total development area;

(ii) Total area with over 30% slope

(iii) Number of lots or units proposed;

(iv) Proposed density calculation;

(v) Evidence of compliance with city stormwater requirements;

(vi) Percentage of each use, such as residential, commercial, recreational, transportation, etc.; and

(vii) Statement of compliance with the design requirements of this chapter.

(c) A re-vegetation plan addressing restoration plans for areas disturbed by preliminary activities.

C. Preliminary assessment and mitigation. Following conceptual approval, preliminary approval of a hazard assessment plan shall be sought from the planning commission or the community development department, as applicable. The information and reports required in this subsection are outlined in the appendices to this chapter; shall be submitted as part of an application for preliminary approval; and may be in addition to information otherwise required for preliminary approval for a subdivision or PUD, or a permit for a conditional or permitted use.

D. Final approval of assessment and mitigation measures. Final approval of hazard assessment and mitigation measures shall be issued by the community development department if the applicant demonstrates satisfactory compliance with all of the requirements of this chapter and compliance with all city requirements for final plat approval, PUD approval and/or conditional use approval, as applicable. All bonding requirements of this code also shall be satisfied prior to the issuance of the final approval by the community development department.

E. Reclamation plan procedure. Any land disturbance in sensitive areas, including test pits, re-grading or alteration of vegetation shall require a reclamation plan. The reclamation plan shall include information about the existing site, the scope of the disturbance, compaction requirements,
drainage, impact to native vegetation, slope stabilization, site security, erosion control measures, revegetation, long term measures to mitigate the proposed impact and any other measures that impact the ability to restore the property to a stable, long term condition. If failure to follow the reclamation plan jeopardizes the safety of the property or results in impact to another property, the city may require a bond, as determined by the DRC.

19.72.080 Geologic hazards study area maps.
A. Geologic hazards study area maps. Appendix A of this chapter contains the geologic hazards study area maps and other supplemental maps (the “Appendix A maps”) applicable to identified sensitive lands in the city. The Appendix A maps are prepared using the best available scientific information, but are necessarily generalized and designed only to indicate areas where hazards may exist and where geologic hazards studies are required. Because such maps are prepared at a non-site-specific scale, hazards may exist that are not shown on the maps. The fact that a site is not shown in a geologic hazards study area for a particular hazard does not exempt the applicant from considering the hazard if evidence is found that it may exist. It is the responsibility of the applicant to consider and identify all geologic hazards on the subject site. If it is subsequently determined that the site has geologic hazards or other features that are not shown on the Appendix A maps, the review process will be pursuant to this chapter.

B. Geologic hazards study area boundaries. Boundaries shown on the Appendix A maps will not be systematically adjusted as each individual site-specific study indicates whether or not an actual hazard exists. Geologic hazards study area maps and other supplemental maps are meant only to define areas within the city where scientific evidence indicates a hazard may exist. However, the Exhibit A maps may be updated and amended by the city if found to be inaccurate or erroneous, or as new methods or data are developed to better define areas of potential hazards.

C. Modification of geologic hazards study area and supplemental maps. Where geologic hazards study area maps are thought by an applicant to be inaccurate or erroneous and require revision, the applicant shall submit to the city technical evidence by a qualified professional supporting the claim and showing the proposed revision. The DRC will review the information and render a decision. The applicant may appeal that decision to the city’s board of adjustment as provided in chapter 19.92 of this title.

19.72.090 Geologic hazard studies and reports required.
A. Any applicant requesting development approval on sensitive lands shall submit to the city five paper copies and one electronic copy of a site-specific geologic hazard study report for such land meeting the requirements of Appendices B-G of this chapter.

B. Applicants who are required to complete site-specific geological hazards tests shall be directed by the city regarding the scope of the required studies and tests through the conceptual proposal/disturbance permit process outlined in this chapter.

C. A foundation excavation report or observation report must be submitted to the city’s building department for all new construction on sensitive lands. This report shall show that the developer or applicant has complied with all requirements and recommendations (including those in previous geotechnical reports that have been conducted for the subject property); shall show any geologic hazards found after excavation but prior to footing and foundation construction; and shall be certified by a licensed geotechnical engineer or engineering geologist as required by this chapter.
19.72.100 Geologic hazard reports.

A. Upon a determination by the DRC of the scope of geologic or other hazard studies required by an applicant, the applicant, at its expense, shall provide the city with a site-specific report consistent with the requirements of this chapter that identifies all known or suspected geologic hazards on the site, whether originating on-site or off-site, and whether previously identified or previously unrecognized, that may affect the subject property. All reports shall include the original signature and wet stamp of the qualified professional geotechnical engineer or engineering geologist. Geologic hazards reports co-prepared by professional geologists and engineers must include the original signature and wet stamp of both professionals.

B. The scope of the development and the potential for hazards to exist on a sensitive lands property, as determined by the DRC in consultation with the city engineer and city geologist, shall govern which of the following studies must be completed in connection with a development application (the specific requirements for the performance of such studies are found in the appendices to this chapter):

1. Surface fault rupture hazard report (Appendix B). Surface fault rupture hazard reports shall contain all requirements described in Appendix B of this chapter, Minimum Standards for Surface Fault Rupture Hazard Studies. Surface fault rupture studies shall be conducted by a qualified engineering geologist.

2. Slope stability and landslide hazard reports (Appendix C). Slope stability and landslide hazard reports shall contain all requirements described in Appendix C of this chapter, Minimum Standards for Slope Stability Hazard Studies. Slope stability and landslide studies shall be conducted by a qualified engineering geologist, a qualified geotechnical engineer.

3. Liquefaction hazard reports (Appendix D). Liquefaction hazard reports shall contain all requirements described in Appendix D of this chapter, Minimum Standards for Liquefaction Hazard Studies. Liquefaction analyses shall be conducted by a qualified geotechnical engineer.

4. Debris flow hazard reports (Appendix E). Debris flow hazard reports shall contain all requirements described in Appendix E of this chapter, Minimum Standards for Debris Flow Hazard Studies. Debris flow hazard investigations shall be conducted by a qualified engineering geologist. Mitigation measures will generally require contributions from geotechnical engineers, hydrologists, or civil engineers.

5. Rockfall hazard reports (Appendix F). Rockfall hazard reports shall contain all requirements described in Appendix F of this chapter, Minimum Standards for Rock-Fall Hazard Studies. Rockfall studies shall be conducted by a qualified engineering geologist. Mitigation measures will generally require contributions from geotechnical and/or civil engineers.

6. Foundation excavation observation reports (Appendix H). Foundation excavation observation reports shall contain all requirements described in Appendix H of this chapter, Minimum Standards for Foundation Excavation Observation Reports. Foundation observation reports shall be conducted by a qualified geotechnical engineer or engineering geologist. A foundation excavation observation report is required as a condition to issuance of all building permits in sensitive lands areas.

C. In addition to the requirements of the aforementioned reports, all geologic hazards reports shall include the following:

1. A 1:24,000-scale geologic map, with references, showing the general surface geology (landslides, alluvial fans, etc), bedrock geology where exposed, bedding attitudes, faults, and other geologic structural features;
2. A detailed site map of the subject area, at a scale equal to or more detailed than one inch equals 200 feet, showing the locations of subsurface investigations and site-specific geologic mapping performed as part of the geologic investigation, including boundaries and features related to any geologic hazards, topography, and drainage. The site map must show the location and boundaries of the property, geologic hazards, delineation of any recommended setback distances from hazards, and recommended locations for structures. Buildable and non-buildable areas shall be clearly identified;

3. Trench logs, when applicable, prepared in the field and presented in the geologic hazard report at a scale equal to or more detailed than one inch equals five feet;

4. Boring logs, when applicable, prepared with standard geologic nomenclature;

5. Listing of aerial photographs used and other supporting information, as applicable;

6. Conclusions, clearly supported by adequate data included in the report, that summarize the characteristics of the geologic hazards, and that address the potential effects of the geologic conditions and geologic hazards on the proposed development and its occupants, particularly in terms of risk and potential damage;

7. Specific recommendations for additional or more detailed studies, as may be required to understand or quantify a geologic hazard;

8. An evaluation of whether or not mitigation measures are required, including an evaluation of multiple mitigation options;

9. Specific recommendations for avoidance or mitigation of the effects of the hazards, consistent with the purposes set forth in this chapter, including design or performance criteria for engineered mitigation measures and all supporting calculations, analyses, modeling or other methods, and assumptions. Final design plans and specifications for engineered mitigation must be signed and stamped by a qualified geotechnical, civil and/or structural engineer, as appropriate;

10. All data upon which recommendations and conclusions are based shall be clearly stated in the report;

11. A statement shall be provided regarding the suitability of the proposed development from a geologic hazard perspective; and

12. Identification of all utilities that serve the proposed development, including design and specifications of flexible expansion joints for utility lines that cross any fault line(s).

D. When a submitted report does not contain adequate data to support its findings, additional or more detailed studies shall be required to explain or quantify a particular geologic hazard or to describe how mitigation measures recommended in the report are appropriate and adequate.

19.72.110 Review of geologic hazard reports.

A. The city shall review any proposed land use which requires preparation of a geologic hazards report under this chapter to determine the possible risks to the safety of persons, property and city infrastructure from geologic hazards.

B. Prior to consideration of any request for rezoning, preliminary plan approval, conditional use approval and/or site plan approval of property, the required geologic hazard reports shall be submitted to the city for review.

C. The city will act diligently in reviewing each submitted geologic hazard report.

D. All direct costs associated with the review of geologic hazard reports shall be paid by the applicant through the application fee.
E. The city shall retain a copy of each geologic hazard report in the community development department’s project file.

F. The city shall determine whether the report complies with all of the standards set forth in this chapter, including the following:

1. That suitable geologic hazard reports have been prepared by qualified professionals.

2. That the proposed land use does not present an unreasonable risk to the health, safety, and welfare of persons or property, including buildings, storm drains, public streets, culinary water facilities, utilities or critical facilities, whether off-site or on-site, or to the aesthetics and natural functions of the landscape, such as slopes, streams, other waterways, drainage, or wildlife habitat, whether off-site or on-site, because of the presence of geologic hazards or because of modifications to the site due to the proposed land use.

3. That the proposed land use demonstrates that, consistent with the state of the practice, the identified geologic hazards can be mitigated to a level where the risk to human life and damage to property are reduced to an acceptable and reasonable level in a manner which will not violate applicable federal, state, or local statutes, ordinances or regulations. Mitigation measures should consider, in their design, the intended aesthetic functions of other governing ordinances. The applicant must include with the geologic hazards reports a mitigation plan that defines how the identified hazards or limitations will be addressed without impacting or adversely affecting off-site areas. Implementation of mitigation measures must be reasonable and practical, especially if such measures require on-going maintenance by property owners.

G. The city may set other requirements that it deems necessary to mitigate any geologic hazards and to ensure that the purposes of this chapter are met. These other requirements may include, without limitation, the following:

1. Additional or more detailed studies to understand or quantify the hazard or determine whether mitigation measures recommended in the report are adequate;

2. Specific mitigation requirements, establishing buildable and non-buildable areas, limitations on slope grading and controls on grading, or re-vegetation;

3. Grading plans prepared by a licensed professional engineer which include the following, as required by the DRC:
 (a) Maps of existing and proposed contours;
 (b) Present and proposed slopes for each graded area;
 (c) Existing and proposed drainage patterns;
 (d) Location and depth of all proposed cuts and fills;
 (e) Description of methods to be employed to achieve stabilization and compaction;
 (f) Location and capacities of proposed drainage, structures, and erosion control measures based on maximum runoff for a 100-year storm;
 (g) Location of existing buildings or structures on or within 100 feet of the site, or which may be affected by proposed grading and construction; and
 (h) Plan for monitoring and documentation of testing, field inspections during grading, and reporting to the city.

4. Installation of monitoring equipment and seasonal monitoring of surface and subsurface geologic conditions, including ground-water levels; and

5. Other requirements such as time schedules for completion of the mitigation and phasing of development.

H. All information shall be submitted as an original signed, wet-stamped document for the city’s use, such as, making additional copies as deemed necessary, distribution to the public,
review by other professionals or use by other parties that have an interest in the property. All information shall also be submitted in a digital format as directed by the city for use in the city’s infrastructure database, GIS, CADD archives or other digital platform for city business, or for recording at the Salt Lake County Recorder’s office.

I. As a condition of approval of any development of sensitive lands which requires a geologic hazards report, the city may also set additional requirements as it deems necessary to protect the health, safety, and welfare of its residents, protect the city’s infrastructure and financial health, and minimize potential adverse effects of geologic hazards to public health, safety, and property.

J. The city may require a qualified professional to be on site, at the developer’s cost, during certain phases of development and construction, particularly during grading phases and the construction of retaining walls. For any real property being developed based on a geologic or geotechnical report which has been accepted by the city, no final inspection shall be completed, certificate of occupancy issued or performance bond released until the geotechnical engineer or engineering geologist who signed and approved such report certifies in writing that the completed improvements and structures conform to the descriptions and requirements contained in such report.

K. An applicant may appeal any decision made under the provisions of this chapter only after the city has issued a written review of a report. The city’s board of adjustment shall serve as the appeal authority for any dispute under this chapter. Any such appeal shall set forth the specific grounds or issues upon which the appeal is based. The appeal shall be submitted in writing to the city’s board of adjustment within 30 days after the city’s issuance of the written review or other decision that is the subject of such appeal.

19.72.120 Disclosure when a geologic hazard report is required.

A. Whenever a geologic hazard report is required under this chapter, the owner of the affected site shall record a signed, notarized disclosure notice, running with the land, in a form satisfactory to the city prior to the city’s approval of any development or subdivision of such land. The recorded disclosure shall include the following:

1. Notice that the land is located within a geologic hazards study area as shown on the geologic hazards study area map or as otherwise defined in this chapter; and

2. Notice that a geologic hazards report was prepared and is available for public inspection in the city’s files.

B. Where geologic hazards and related setbacks are delineated in a subdivision, the owner shall also place additional notification on the plat stating the above information, prior to final approval and recording of the plat.

19.72.130 Warning and disclaimer.

The city’s geologic hazards study area maps represent only those potentially hazardous areas known to the city and should not be construed to include all possible potential hazard areas. This chapter and the geologic hazards study area maps referenced herein may be amended by the city as new information becomes available pursuant to procedures set forth in this chapter. The provisions of this chapter do not in any way assure or imply that areas outside the geologic hazards study area maps boundaries are free from the possible adverse effects or risk of geologic hazards. This chapter shall not create any liability on the part of the city or any of its officers, employees, reviewers, consultants, agents or contractors for any damages from geologic hazards.
that result from reliance on this chapter or any administrative requirement or decision lawfully made hereunder.

19.72.140 Change of use.
No change in use which results in the conversion of a building or structure from one that is not used for human occupancy to one that is used for human occupancy shall be permitted unless the building or structure complies with the provisions of this chapter.

19.72.150 Conflicting regulations.
In cases of conflict between this chapter and the provisions of existing zoning classifications, building code, subdivision ordinance, or any other ordinance of the city or applicable law, the most restrictive provision shall apply.
Table 1--Essential Facilities

A. In the event of failure, the following buildings and structures represent a substantial hazard to human life:
 1. Buildings where more than 300 people congregate in one area;
 2. Elementary schools, secondary schools, or day care facilities with an occupancy greater than 250;
 3. Colleges or adult education facilities with an occupancy greater than 500;
 4. Health care facilities with an occupancy greater than 50 or more resident patients but not having surgery or emergency treatment facilities;
 5. Jails and detention facilities;
 6. Any structure with an occupancy greater than 1,000;
 7. Power generating stations, water treatment or storage for potable water, waste water treatment facilities and other public utility facilities; and
 8. Buildings containing toxic or explosive substances that would be dangerous to the public if released.

B. Essential facilities include, without limitation, the following buildings and structures:
 1. Hospitals and other care facilities having surgery or emergency treatment facilities;
 2. Fire, rescue and police stations and emergency vehicle garages and fueling facilities;
 3. Designated emergency shelters;
 4. Designated emergency preparedness, communications, and operation centers and other facilities required for emergency response;
 5. Power-generating stations and other public utility facilities required as emergency backup facilities for facilities and structures included in this table;
 6. Structures containing highly toxic materials as defined by the most recently adopted version of the IBC;
 7. Aviation control towers, air traffic centers and emergency aircraft hangars;
 8. Buildings and other structures having critical national defense functions; and
 9. Water treatment and storage facilities required to maintain water pressure for fire suppression.
APPENDIX B

Minimum Standards for Surface Fault Rupture Hazard Studies

Sensitive Lands Evaluation & Development Standards (SLEDS)
Chapter 19.72, COTTONWOOD HEIGHTS CODE OF ORDINANCES

TABLE OF CONTENTS

1.0 INTRODUCTION ... 1

1.1 Purposes ... 1
1.2 Properties requiring a fault investigation ... 2
1.3 References and sources ... 2

2.0 MINIMUM STANDARDS FOR FAULT STUDIES .. 3

2.1 Scoping meeting .. 3
2.2 Fault investigation method ... 3
2.2.1 Previous studies and aerial photograph review .. 3
2.2.2 Exploration methods ... 3
2.2.3 Trench siting ... 4
2.2.4 Location determination .. 4
2.2.5 Depth of excavation .. 4
2.2.6 Documenting trench exposures ... 5
2.2.7 Age dating ... 5

2.3 Field review ... 6

2.4 Recommendations for fault setbacks ... 6

2.5 Small displacement faults .. 7

2.6 Required outline for surface fault rupture hazard studies 7
2.6.1 Report .. 8
2.6.2 Report references .. 9
2.6.3 Support information .. 9

Table A-1. Setback recommendations and criticality factors (U) for IBC occupancy classes
1.0 INTRODUCTION

The Wasatch Fault Zone is a major tectonic feature of the intermountain region in the western United States. It extends from Fayette, Utah at the south to Malad, Idaho at the north, comprising about 230 miles. Surface faulting has occurred along the Wasatch Fault Zone in northern Utah throughout late Pleistocene and Holocene time. "Surface faulting" is a fault-related offset or displacement of the ground surface that may occur in an earthquake.

The Wasatch Fault Zone consists of a series of normal-slip fault segments where the earth experiences relative downward movement on the west side and upward movement on the east side. Ten major fault segments are recognized along the Wasatch Fault Zone, which are believed to be independent in regard to their potential for surface faulting. These segments have distinct geomorphic expression and are clearly visible on aerial photographs.

In the Salt Lake Valley, the Wasatch Fault Zone is represented by the Salt Lake City segment, which extends about 23 miles along the eastern edge of the valley. A portion of the Salt Lake City segment of the Wasatch Fault Zone is present in the foothills of Cottonwood Heights (the "city") on the eastern side of city. Documentation of repeated Holocene movements suggest that at least four major earthquake events have occurred in the last 6,000 years along Wasatch Boulevard near the mouth of Little Cottonwood Canyon.

In the event of an earthquake, a fault could break the ground surface below or near a structure and cause significant property damage, injuries and loss of life. In order to reduce risk from surface-fault-rupture hazards and to protect public health and safety, the city has defined a boundary for the sensitive lands that may have a heightened potential for surface fault ruptures and is requiring study for all new development or re-development within this area. Quaternary faults located within the Surface Fault Rupture Hazard Study Area should be considered active until proven otherwise.

The city requires a site specific geologic study for all properties that may be impacted by the Wasatch Fault Zone. The study must address the surface fault rupture potential and assess the suitability of the proposed development. In the event that a fault is discovered and deemed active (i.e., Holocene-age), appropriate building setbacks are required to minimize the potential damage during an earthquake.

The site-specific surface fault rupture hazard study requires a field investigation. This includes geologic documentation of an excavated trench or other pre-approved method of exploration and accompanying report that addresses the findings. The following information in this appendix describes the minimum standards required by the city for the surface fault rupture hazard study.

1.1 Purposes.

(a) The purposes of establishing minimum standards for surface fault rupture hazard studies are to:

(i) Protect the health, safety, welfare, and property of the public by minimizing the potential adverse effects of surface fault ruptures and related hazards.

(ii) Provide guidance for property owners and land developers in performing reasonable and adequate studies of sensitive lands in the city.
(iii) Provide consulting engineering geologists with a common basis for preparing proposals, conducting investigations, and recommending setbacks.

(iv) Provide a consistent and objective framework for review of fault study reports.

(b) The procedures in this appendix are intended to provide the developer and consulting engineering geologist with an outline of appropriate exploration methods, standardized report information, and city expectations.

(c) These standards are the minimum level of effort required in conducting surface fault rupture hazard studies within the city. Considering the complexity of evaluating surface and near-surface faults, additional effort beyond the minimum standards may be required at some sites to adequately address the surface fault rupture hazard. The information presented in this appendix does not relieve the engineering geologist from his/her duty to perform additional geologic or engineering services he/she believes are necessary to assess the surface fault rupture potential at a site. In the interest of public safety, the city may, at any time, require additional information, studies, tests or other work that is not included in this appendix.

1.2 Properties requiring a fault investigation.

(a) Before approval of any land use, a fault study is required for properties within the surface fault rupture special study area that is located near the Wasatch Fault Zone, or any other property within the city that observes a fault trace during excavation. Appendix A of city code chapter 19.72 (“chapter 19.72”) contains the Surface Fault Rupture Hazard Study Area Map (Map 1) that identifies areas with known active faults in the city. Properties within this area must perform site-specific geologic investigations. Development of any parcel within the Surface Fault Rupture Hazard Study Area requires submittal and review of a site-specific fault study prior to receiving a land use or building permit from the city. It is the responsibility of the applicant to retain a qualified (as provided in chapter 19.72) engineering geologist to perform the fault study.

(b) In addition, a fault study may be required if onsite or nearby fault-related features not shown on the Surface Fault Rupture Hazard Study Area Map are identified during the course of other geologic or geotechnical studies performed on or near the site or during construction.

1.3 References and sources.

(a) Guidelines for Evaluating Surface Fault Rupture Hazards in Utah (AEG, 1987).

(b) Guidelines to geologic and seismic reports, (CDMG, 1986a).

(c) Guidelines for preparing engineering geologic reports (CDMG, 1986b).

(d) Guidelines for Evaluating Potential Surface Fault Rupture/Land Subsidence Hazards in Nevada (Nevada Earthquake Safety Council, 1998)

(e) Fault Setback Requirements to Reduce Fault Rupture Hazards in Salt Lake County (Batatan and Nelson, 1999).

(f) Salt Lake County Geologic Hazards Ordinance (2002).

(g) Draper City Geologic Hazard Ordinance (2003).
(h) Guidelines for evaluating surface-fault-rupture hazards in Utah (Christenson and others, 2003).

2.0 MINIMUM STANDARDS FOR FAULT STUDIES

The following are the minimum standards for a comprehensive surface fault rupture study investigation.

2.1 *Scoping meeting.*

A scoping meeting with the DRC shall be scheduled by the consultant geologist. At this meeting, the developer, the city, and the consultant will evaluate the fault investigation approach. The consultant should bring a site plan to the meeting that shows the following information:

(a) Proposed building locations (if known);
(b) Expected fault location(s) and orientation;
(c) Proposed trench locations, orientation, length, and depth (see Section 2.2, Fault Investigation Method);
(d) Extent of impact to vegetation and trees; and
(e) Method of controlling erosion and managing storm water.

The investigative approach should allow for flexibility due to unexpected site conditions. The field findings may require modifications to the work plan.

2.2 *Fault investigation method.* Inherent in fault study methods is the assumption that future faulting will occur along pre-existing faults and in a manner consistent with past displacement. The focus of fault studies is therefore to accurately locate existing faults. If faults are documented, the investigation shall also include (a) evaluation of the age of movement along the fault trace(s), and (b) estimation of amounts of past displacement, which is required in order to derive fault setbacks.

2.2.1 Previous studies and aerial photograph review. A fault study shall include review of available literature pertinent to the site and vicinity, including previous published and unpublished geologic/soils reports, and interpretation of available stereo-paired aerial photographs. The photographs reviewed should include more than one set and should include pre-urbanization aerial photographs, if available. Efforts must be made to accurately plot the locations of mapped or inferred fault traces on the property as shown by previous studies in the area.

2.2.2 Exploration methods. Subsurface trenching exploration is required. The engineering geologist shall clean and document ("log") trench exposures as described in Section 2.3.5. Existing faults may also be identified and mapped in the field by direct observation of young, fault-related geomorphic features, and by examination of aerial photographs. If trenching is not feasible due to the presence of shallow ground water or excessive fill, supplemental methods such as closely spaced Conc Penetration Test (CPT) soundings may be employed. Such supplemental methods must be discussed with the city prior to implementation and should be clearly described in the report.
(i) In lieu of conventional trenching or the CPT method, an alternative subsurface exploration program may be acceptable, depending upon site conditions. Such a program may consist of geophysical exploration techniques or a combination of other techniques.

(ii) When an alternative exploration program is proposed, a written description of the proposed exploration program along with an exploration plan should be submitted to the city for review and approval, prior to the exploration. The plan must include, at a minimum, a map of suitable scale showing the site limits, surface geologic conditions within several thousand feet of the site boundary, the location and type of the proposed alternative subsurface exploration, and the anticipated earth materials present at depth on the site.

(iii) The actual subsurface exploration program to be used on any specific parcel will be determined on an individual basis, considering the current state of technical knowledge about the fault zone and information gained from previous exploration on adjacent or nearby parcels. At all times, consideration must be given to safety, and trenching should comply with all applicable safety regulations.

2.2.3 Trench siting.

(i) Exploratory trenches must be oriented approximately perpendicular to the anticipated trend of known fault traces. The trenches shall provide the minimum footage of trenching necessary to explore the portion of the property situated in the surface fault rupture study area, such that the potential for surface fault rupture may be adequately assessed. When trenching to determine if faults might affect a proposed building site, the trench should extend beyond the building footprint at least the minimum setback distance for the building type (see Table A-1).

(ii) Test pits or potholes alone are neither adequate nor acceptable. In some instances more than one trench may be required to cover the entire building area, particularly if the proposed development involves more than one building. Where feasible, trenches shall be located outside the proposed building footprint, as the trench is generally backfilled without compaction, which could lead to differential settlement beneath the footings. Supplemental trenching may be required in order to:
- Further refine fault locations (or the absence thereof);
- Accurately define building restriction areas, and/or;
- Provide additional exposures for evaluating the age of movement along fault traces.

2.2.4 Location determination. All trenches and fault locations must be surveyed by a registered professional land surveyor. Fault locations should be surveyed with an accuracy of 0.1 foot or better, so that structural setbacks can be developed. The fault locations (and all other features shown in the site plans) must be tied to a minimum of two Salt Lake County section corner monuments and the coordinate data shall be in US State Plane NAD83 (US Survey Feet). Other features in the site plan shall include property lines, building footprint, geologic features, utilities, existing structures, roadway, fences, etc. The location of all features, including the fault lines, shall be wet stamped and certified by the land surveyor.

2.2.5 Depth of excavation.
(i) The depth of the trenches will ultimately depend on the trench location, occurrence of ground water, stability of subsurface deposits, and the geologic age of the subsurface geologic units. As a minimum, however, trenches shall extend substantially below the A and B soil horizons and well into distinctly bedded Pleistocene-age materials, if possible. Where possible, the trenches should extend below Holocene deposits and should expose contacts between Holocene materials and the underlying older materials.

(ii) Appropriate safety measures pertaining to trench safety for ingress, egress, and working in or in the vicinity of the trench must be implemented and maintained. It is the responsibility of the person in the field directing trench excavation to ensure that fault trenches are excavated in compliance with current Occupational Safety and Health Administration excavation safety regulations.

(iii) Trench backfilling methods and procedures should be documented in order to establish whether additional corrective excavation, backfilling, and compaction should be performed at the time of site grading.

(iv) In cases where Holocene (i.e., active) faults may be present, but pre-Holocene deposits are below the practical limit of excavation, the trenches must extend at least through sediments that are clearly older than several fault recurrence intervals. The practical limitations of the trenching must be acknowledged in the report and recommendations must reflect resulting uncertainties.

2.2.6 Documenting trench exposures. Trench walls shall be cleaned of debris and backhoe smear prior to documentation. Trench logs shall be carefully drawn in the field at a minimum scale of 1-inch equals 5-feet (1:60) following standard and accepted fault trench investigation practices. Vertical and horizontal control must be used and shown on trench logs. Trench logs must document all significant geologic information from the trench and should graphically represent the geologic units observed; see Section 2.6.3(E). The strike, dip, and net vertical displacement (or minimum displacement) of faults must be noted.

2.2.7 Age dating.

(i) The engineering geologist shall interpret the ages of geologic units exposed in the trench. When necessary, radiocarbon or other age determinations methods shall be used. If evidence of faulting is documented, efforts shall be made to date the time of latest movement to determine whether recent (Holocene) displacement has occurred by using appropriate geologic and/or soil stratigraphic dating techniques. When necessary, obtain radiocarbon or other age determinations.

(ii) Many of the surficial deposits within Salt Lake Valley were deposited during the last pluvial lake cycle, referred to as the Bonneville lake cycle. Although late-stage Bonneville lake cycle sediments do not correspond to the Pleistocene-Holocene boundary (i.e., Bonneville lake cycle deposits are older than 10,000 years old), for purposes of evaluating fault activity, these deposits provide a useful regional datum, particularly when the entire Holocene sequence of sediments is not present.

(iii) For practical purposes, and due to documented Holocene displacement along the Salt Lake segment of the Wasatch fault, any fault which displaces late-stage Bonneville Lake Cycle deposits should be considered active unless the Bonneville deposits are overlain by clearly
unfaulted *early* Holocene-age deposits. Conversely, the presence of demonstrably unbroken, undeformed, and stratigraphically continuous Bonneville sediments constitutes reasonable geologic evidence for the absence of active faulting.

2.3 **Field review.** A field review by the city’s geologist is required during exploratory trenching. The applicant must provide a minimum of two business days notice to schedule the field review with the city. The trenches should be open, safe, cleaned, and a preliminary log completed at the time of the review. The field review allows the city to observe the subsurface data such as the age, type of sediments, and presence or absence of faulting with the consultant. Discussions about questionable features or an appropriate setback distance are encouraged, but the city will not help log the trench, explain the stratigraphy, or give verbal approval of the proposed development during the field review.

2.4 **Recommendations for fault setbacks.**

 (a) To address wide discrepancies in fault setback recommendations, the city has adopted the fault setback calculation methodology for normal faults of Batatin and Nelson (1999) and Christenson and others (2003). The consultant should use this method to establish the recommended fault setback for critical facilities and structures designed for human occupancy. If another fault setback method is used, the consultant must provide justification in the report for the method used. Faults and fault setbacks must be clearly identified on site plans and maps.

 (b) The minimum setbacks are based on the type and occupancy of the proposed structure as shown in Table A-1. The setbacks should be calculated using the following formulas presented below, and then compared to the minimum setback established in Table A-1. The greater of the two shall be used as the setback. Minimum setbacks apply to both the hanging wall and footwall blocks.

 (c) Top of slope and/or toe of slope setbacks required by the local Building Code must also be considered; again, the greater setback must be used.

Downthrown Fault Block (Hanging Wall)

The fault setback for the downthrown block will be calculated using the following formula:

\[S = U (2D + F/\tan \theta) \]

where:

- **S** = Setback within which structures for human occupancy are not permitted;
- **U** = Criticality Factor, based on the proposed occupancy of the structure (see Table A-1)
- **D** = Expected fault displacement per event (assumed to be equal to the net vertical displacement measured for each past event)
- **F** = Maximum depth of footing or subgrade portion of the building
- **\(\theta \)** = Dip of the fault (degrees)
Upthrown Fault Block (Footwall)
The dip of the fault and depth of the subgrade portion of the structure are irrelevant in calculating the setback on the upthrown fault block. Therefore, the setback for the upthrown side of the fault will be calculated as:

\[S = U \times 2D \]

The setback is measured from the portion of the building closest to the fault, whether subgrade or above grade. Minimum setbacks apply as discussed above.

2.5 Small displacement faults.
(a) Small-displacement faults are not categorically exempt from setback requirements. Some faults having less than 4 inches (100 mm) of displacement ("small displacement faults") may be exempt from setback requirements.
(b) Specific structural risk-reduction options such as foundation reinforcement may be acceptable for some small-displacement faults in lieu of setbacks. Structural options must minimize structural damage.
(c) Fault studies must still identify faults and fault displacements (both net vertical displacements and horizontal extension across the fault or fault zone), and consider the possibility that future displacement amounts may exceed past amounts. If structural risk-reduction measures are proposed for small displacement faults, the following criteria must be addressed:
 (i) Reasonable geologic data indicating that future surface displacement along the particular fault will not exceed 4 inches.
 (ii) Specific structural mitigation to minimize structural damage.
 (iii) A structural engineer must provide appropriate designs and the city shall review the designs.

2.6 Required outline for surface fault rupture hazard studies.
(a) The information described herein may be presented as a separate surface fault rupture hazard report or it may be incorporated within other geology or engineering reports that may be required for the property.
(b) The report shall contain a conclusion regarding the potential risk of surface fault rupture on the subject property and a statement addressing the suitability of the proposed development from a surface fault rupture hazard perspective. If exploration determines that there is a potential for surface rupture due to faulting, or if gradational contacts or other uncertainties associated with the exploration methods preclude the determination of absence of small fault offsets, the report should provide estimates of the amplitude of fault offsets that might affect habitable structures.
(c) Surface fault rupture hazard reports submitted to the city are expected to follow the outline and address the subjects presented below. However, variations in site conditions may require that additional items be addressed, or permit some of the subjects to be omitted (except as noted).
2.6.1 Report.

(i) Statement of the purpose and scope of work. The report shall contain a clear and concise statement of the purpose of the study and the scope of work performed for the study.

(ii) Site description and conditions. The report shall include information on geologic units, graded and filled areas, vegetation, geomorphic features, existing structures, and other factors that may affect site development, choice of investigative methods, and the interpretation of data.

(iii) Geologic and tectonic setting. The report shall contain a clear and concise statement of the genera, geologic and tectonic setting of the site and surrounding vicinity. This section should include a discussion of active faults in the area, paleoseismicity of the relevant fault system(s), and should reference relevant published and unpublished geologic literature.

(iv) Methods of investigation.

A. Review of published and unpublished maps, literature and records concerning geologic units, faults, surface and ground water, and other factors.

B. Stereoscopic interpretation of aerial photographs to detect fault-related topography, vegetation or soil contrasts, and other lineaments of possible fault origin. Reference the photograph source, date, flightline numbers, and scale. Salt Lake County has an excellent collection of stereoscopic aerial photographs dating back to 1937 (including 1937, 1940, 1958, 1964, and 1985).

C. Observations of surface features, both on-site and off-site, including mapping of geologic and soil units; geomorphic features such as scarps, springs, and seeps (aligned or not); faceted spurs, offset ridges or drainages; and geologic structures. Locations and relative ages of other possible earthquake-induced features such as sand blows, lateral spreads, liquefaction, and ground settlement should be mapped and described. Slope failures, although they may not be conclusively tied to earthquake causes, should also be noted.

D. The report shall include a description of the program of subsurface exploration, including trench logs, purpose of trench locations, and a summary of trenching or other detailed, direct observation of continuously exposed geologic units, soils, and geologic structures. All trench logs shall be at a scale of at least 1-inch is equal to five-feet.

E. The report must describe the criteria used to evaluate the ages of the deposits encountered in the trench, and clearly evaluate the presence or absence of active (Holocene) faulting.

(v) Conclusions.

A. Conclusions must be supported by adequate data and shall contain, at a minimum a summary of data upon which conclusions are based.

B. Location of active faults, including orientation and geometry of faults, amount of net slip along faults, anticipated future offset, and delineation of setback areas.

C. Degree of confidence in and limitations of data and conclusions.

(vi) Recommendations. Recommendations must be supported by adequate geologic data and appropriate reasoning behind each statement. Minimum recommendations shall include:

A. Recommended setback distances per Section 2.4. Supporting calculations must be included. Faults and setbacks must be shown on site maps and final recorded plat maps.

B. Other recommended building restrictions or use limitations (i.e., placement of detached garages, swimming pools, or other non-habitable structures).
C. Need for additional or future studies to confirm buildings are not sited across active faults, such as inspection of building footing or foundation excavations by the consultant.

2.6.2 Report references. Reports must include citations of literature and records used in the study, referenced aerial photographs or images interpreted (air-photo source, date and flight number, scale), and any other sources of data and information, including well logs, personal communications, etc.

2.6.3 Support information. At a minimum, each geologic report must include the following support information:

(i) Location map. A site location map depicting topographic and geographic features and other pertinent data. Generally a 1:24,000-scale USGS topographic base map will suffice.

(ii) Geologic map. A regional-scale map (1:24,000 to 1:50,000 scale) is generally adequate. Depending on site complexity, a site-scale geologic map (minimum 1 inch = 200 ft or more detailed) may also be necessary. The map should show Quaternary and bedrock geologic units, faults, seeps or springs, soil or bedrock slumps, and other geologic and soil features existing on and adjacent to the project site. Geologic cross-sections may be included as needed to illustrate 3-dimensional relationships.

(iii) Site plan and fault map. A detailed survey-grade site plan is required. The site plan shall be prepared and certified by a licensed surveyor. The site plan should be at a minimum scale of at least 1 inch = 200 feet and should clearly show site boundaries, proposed building footprints, existing structures, streets, slopes, drainages, exploratory trenches, boreholes, test pits, geophysical traverses, utilities, property lines, fences, slopes, trees, retaining walls, adjacent structures and any other appurtenant features. The site plan shall include the locations of subsurface investigations and site-specific geologic mapping performed as part of the geologic investigation, including boundaries and features related to any geologic hazards, topography, and drainage. The site map must also show the surface fault rupture hazard study area within the subject site the locations of all faults identified during the investigation conducted for the subject site including inferred location of the faults between trenches and must show all recommended setbacks from identified faults and from the ends of trenches located within the surface fault rupture hazard study area. The site map must show the location of all proposed flexible expansion joints for utilities. Both buildable and non-buildable areas shall be clearly identified. All features on the map shall be tied to a minimum of two public survey monuments tied with bearings and distances. The datum shall be submitted in US State Plane NAD83 (US Survey Feet) and wet-stamped by a licensed surveyor. The site map should include a legend describing pertinent items shown on the map.

(iv) Exploratory trench logs. Trench logs are required for each trench excavated as part of the study, whether faults are encountered or not. Trench logs shall accurately depict all observed geologic features and conditions. Trench logs are hand- or computer-generated maps of excavation walls that show details of geologic units and structures. Logs must be submitted with a scale and not be generalized or diagrammatic. The minimum scale is 1 inch = 5 feet (1:60) with no vertical exaggeration. Trench logs must accurately reflect the features observed in the trench (see Section 2.3.6). Photographs shall not be used as a substitute for trench logs. However, it is recommended that a photographic log of the trench also be created.
(v) **Contents of trench logs.** Trench logs shall include orientation and indication of which trench wall was logged; trench top and bottom; stratigraphic contacts; stratigraphic unit descriptions including lithology, USCS soil classification, genesis (geologic origin), age, and contact descriptions; soil (pedogenic) horizons; marker beds; and deformation or offset of sediments, faults, and fissures. Other features of tectonic significance such as buried scarp freefaces, colluvial wedges, in-filled soil cracks, drag folds, rotated clasts, lineations, and liquefaction features including dikes, sand blows, etc. should also be shown. Interpretations of the age and origin of the deposits and any faulting or deformation must be included, based on depositional sequence. Fault orientation and geometry (strike and dip), and amount of net displacement must be measured and noted. Provide evidence for the age determination of geologic units. For suspected Holocene faults where unfaulted Holocene deposits are deeper than practical excavation depths, clearly state the study limitations.

(vi) **Exploratory boreholes and CPT soundings.** If boreholes or CPT soundings are utilized as part of the investigation, reports shall include the logs of the borings/soundings. Borehole logs must include lithology descriptions, interpretations of geologic origin, USCS soil classification or other standardized engineering soil classification (include an explanation of the classification scheme), sample intervals, penetrative resistance values, static ground-water depths and dates measured, total depth of borehole, and identity of the person logging the borehole. Electronic copies of CPT data files should be provided to the city’s reviewer, upon request. Since boreholes are typically multipurpose, borehole logs should contain standard geotechnical and geologic data such as lithology descriptions, soil class, sampled intervals, sample recovery, blow-count results, static ground-water depths with dates measured, total depth of boreholes, drilling and sampling methods, and identity of the person logging the borehole. In addition, borehole, geoprobe hole, and cone-penetrometer logs for fault studies should include the geologic interpretation of deposit genesis for all layers. Also include boring logs or logs from other exploration techniques, when applicable, prepared with standard geologic nomenclature.

(vii) **Geophysical data.** All geophysical data, showing stratigraphic interpretations and fault locations, must be included in the report, along with correlations to trench or borehole logs to confirm interpretations.

(viii) **Photographs.** Photographs of scarps, trench walls, or other features that enhance understanding of site conditions and fault-related conditions are not required but should be included when deemed appropriate. Composite, rectified digital photographs of trench walls may be used as background for trench logs, but features as outlined in section F (?????) above must still be delineated.

(ix) **Type and number of buildings.** A description of the location and size of site and proposed type and number of buildings (if known) planned for the site.

(x) **Specific recommendations.** Specific recommendations consistent with the purposes set forth in chapter 19.72, including a discussion of the evidence establishing the presence or absence of faulting including ages and geologic origin of faulted and unfaulted stratigraphic units and surfaces. The discussion shall include the location of faults, including orientation and geometry of faults, maximum amounts of vertical displacement on faults, anticipated future offsets, calculation of setbacks, and delineation of setback (non-buildable) areas if applicable. Recommendations must be supported with geologic evidence and appropriate reasoning that is supported by industry standards. Other recommended building restrictions, use
limitations, or risk-reduction measures such as placement of detached garages, swimming pools, or other non-habitable structures in fault zones, or use of reinforced foundations for small-displacement faults.

(xii) **Support data.** All data upon which recommendations and conclusions are based shall be clearly stated in the report. This includes a complete citations of literature and records used in the study including personal communications, published and unpublished geologic literature with emphasis on current sources that discuss Quaternary faults in the area, historical seismicity (particularly earthquakes attributed to area faults), and geodetic measurements where pertinent. A listing of aerial photographs used and other supporting information, as applicable.

(xiii) **Suitability of the development.** A statement shall be provided regarding the suitability of the proposed development from a geologic hazard perspective.

(xiv) **Flexible expansion joints.** All sewer and water lines that cross any fault on the subject site shall be equipped with flexible expansion joints to prevent rupture and consequential damage in the event of an earthquake.

(xv) **Foundation excavation inspection.** Recommended inspection of building foundation excavations during construction to confirm surface and subsurface investigations.

(xvi) **Current signature and seal.** A current signature and seal of the investigating, Utah-licensed professional geologist(s). Qualifications giving education and experience in engineering geology and fault studies can be presented through a CV or resume format in the appendix of the report.

(xvii) **Conclusions.** Conclusions that are clearly supported by adequate data included in the report, that summarize the characteristics of observed surface fault rupture hazards, and that address the potential effects of all identified faults on the proposed development, particularly in terms of risk and potential damage. All other geologic hazards identified during the investigation should be discussed. A discussion regarding the degree of confidence and/or limitations of the data should also be included. Supporting data relevant to the investigation not given in the text such as cross-sections, conceptual models, fence diagrams, survey data, water-well data, and qualifications statements. Specific recommendations for additional or more detailed studies, as may be required to understand or quantify all geologic hazards identified at the subject site.

<table>
<thead>
<tr>
<th>Class (IBC)</th>
<th>Occupancy group</th>
<th>Criticality</th>
<th>U</th>
<th>Minimum setback</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Assembly</td>
<td>2</td>
<td>2.0</td>
<td>25 feet</td>
</tr>
<tr>
<td>B</td>
<td>Business</td>
<td>2</td>
<td>2.0</td>
<td>20 feet</td>
</tr>
<tr>
<td>E</td>
<td>Educational</td>
<td>1</td>
<td>3.0</td>
<td>50 feet</td>
</tr>
<tr>
<td>F</td>
<td>Factory/Industrial</td>
<td>2</td>
<td>2.0</td>
<td>20 feet</td>
</tr>
<tr>
<td>H</td>
<td>High hazard</td>
<td>1</td>
<td>3.0</td>
<td>50 feet</td>
</tr>
<tr>
<td>I</td>
<td>Institutional</td>
<td>1</td>
<td>3.0</td>
<td>50 feet</td>
</tr>
<tr>
<td>M</td>
<td>Mercantile</td>
<td>2</td>
<td>2.0</td>
<td>20 feet</td>
</tr>
<tr>
<td>R</td>
<td>Residential (R-1, R-2, R-4)</td>
<td>2</td>
<td>2.0</td>
<td>20 feet</td>
</tr>
<tr>
<td>R-3</td>
<td>Residential (R-3, includes Single Family Homes)</td>
<td>3</td>
<td>1.5</td>
<td>15 feet</td>
</tr>
<tr>
<td>S</td>
<td>Storage</td>
<td>-</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>U</td>
<td>Utility and misc.</td>
<td>-</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Table A-2</td>
<td>1</td>
<td>3.0</td>
<td>50 feet</td>
</tr>
</tbody>
</table>
Table A-2

Additional Structures Requiring Geologic Investigation

A. Buildings and other structures that represent a substantial hazard to human life in the event of failure, but not limited to:
 1. Buildings and other structures where more than 300 people congregate in one area.
 2. Buildings and other structures with elementary school, secondary school or day care facilities with occupancy greater than 250.
 3. Buildings and other structures with occupancy greater than 500 for colleges or adult education facilities.
 4. Health care facilities with occupancy greater than 50 or more resident patients but not having surgery or emergency treatment facilities.
 5. Jails and detention facilities.
 6. Any other occupancy with occupancy greater than 1000.
 7. Power generating stations, water treatment or storage for potable water, waste water treatment facilities and other public utility facilities.
 8. Buildings and other structures containing sufficient quantities of toxic or explosive substances to be dangerous to the public if released.

B. Buildings and other structures designed as essential facilities including, but not limited to:
 1. Hospitals and other care facilities having surgery or emergency treatment facilities.
 2. Fire, rescue and police stations and emergency vehicle garages and fueling facilities.
 3. Designated emergency shelters.
 4. Designated emergency preparedness, communications, and operation centers and other facilities required for emergency response.
 5. Power-generating stations and other public utility facilities required as emergency backup facilities for facilities and structures included in this table.
 6. Structures containing highly toxic materials as defined by the most recently adopted version of the IBC where the quantity of the material exceeds the maximum allowable quantities defined by the most recently adopted version of the IBC.
 7. Aviation control towers, air traffic centers and emergency aircraft hangars.
 8. Water treatment and storage facilities required to maintain water pressure for fire suppression.
APPENDIX C
Minimum Standards for Slope Stability Analyses

Sensitive Lands Evaluation & Development Standards (SLEDS)
Chapter 19.72, COTTONWOOD HEIGHTS CODE OF ORDINANCES

TABLE OF CONTENTS

1.0 INTRODUCTION ... 2
 1.1 Purposes ... 2
 1.2 References and Sources .. 3
 1.3 Areas Requiring Slope Stability Analyses ... 3
 1.4 Roles of Engineering Geologist and Engineering .. 3

2.0 GENERAL REQUIREMENTS .. 4

3.0 SUBMITTALS .. 4

4.0 FACTORS OF SAFETY ... 4

5.0 LANDSLIDES .. 4

6.0 SITE INVESTIGATION AND GEOLOGIC STUDIES ... 4

7.0 SUBSURFACE EXPLORATION ... 5
 7.1 Trenching ... 5
 7.2 Methods for Bedded Formations .. 6
 7.3 Other Geologic Units ... 6

8.0 SOIL PARAMETERS .. 6
 8.1 Residual Shear Strength Parameters .. 6
 8.2 Interpretation .. 7

9.0 SOIL CREEP ... 7

10.0 GROSS STATIC STABILITY .. 7

09-05-07 Draft (rev. 6)
1.0 INTRODUCTION

The procedures outlined in this appendix are intended to provide consultants with a general outline for performing quantitative slope stability analyses and to clarify the expectations of the city of Cottonwood Heights (the "city"). These standards constitute the minimum level of effort required in conducting quantitative slope stability analyses in the city. Considering the complexity inherent in performing slope stability analyses, additional effort beyond the minimum standards presented herein may be required at some sites to adequately address slope stability. The information presented herein does not relieve consultants of their duty to perform additional geologic or engineering analyses they believe are necessary to assess the stability of slopes at a site.

The evaluation of landslides generally requires quantitative slope stability analyses. Therefore, the standards presented herein are directly applicable to landslide investigation, and also constitute the minimum level of effort when performing landslide investigations. This appendix does not address debris flows (see Appendix E) or rock falls (see Appendix F).

1.1 Purposes. The purposes for establishing minimum standards for slope stability analyses are to:

(a) Protect the health, safety, welfare, and property of the public by minimizing the potentially adverse effects of unstable slopes and related hazards;

(b) Assist property owners and land developers in conducting reasonable and adequate slope stability studies;

(c) Provide consulting engineering geologists and geotechnical engineers with a common basis for preparing proposals, conducting investigations, and designing and implementing mitigation; and

(d) Provide an objective framework for regulatory review of slope stability reports.
1.2 **References and Sources.** The minimum standards presented in this appendix were developed, in part, from the following sources:

(a) Guidelines for Evaluating Landslide Hazards in Utah (Hyland, 1996).
(b) Recommended Procedures for Implementation of DMG Special Publication 117, Guidelines for Analyzing and Mitigating Landslide Hazards in California (Blake et al., 2002).
(c) DMG Special Publication 117, Guidelines for Analyzing and Mitigating Landslide Hazards in California.
(d) Salt Lake County Geologic Hazards Ordinance (2002).
(f) City of Draper, Utah, Title 9, Land Use and Development Code for Draper City, Chapter 9-19, Geologic Hazards Ordinance, December 11, 2007.

1.3 **Areas Requiring Slope Stability Analyses.**

(a) Slope stability analyses shall be performed for all sites located within the Slope Stability Study Area Map and for all slopes that may be affected by the proposed development which meet the following criteria:

(i) Cut and/or fill slopes steeper than about 2 horizontal (h) to 1 vertical (v).
(ii) Natural slopes steeper than or equal to 3 horizontal (h) to 1 vertical (v).
(iii) Natural and cut slopes with potentially adverse geologic conditions (e.g. bedding, foliation, or other structural features that are potentially adverse to the stability of the slope).
(iv) Natural and cut slopes which include a geologic hazard such as a landslide, irrespective of the slope height or slope gradient.

(v) Buttresses and stability fills.

(vi) Cut, fill, or natural slopes of water-retention basins or flood-control channels.

(b) In hillside areas, investigations shall address the potential for surficial instability, debris/mudflows (see Appendix E), rock falls (see Appendix F), and soil creep on all slopes that may affect the proposed development or be affected by the proposed development.

(c) When evaluating site conditions to determine the need for slope stability analyses, off-property conditions shall be considered (both up-slope to the top(s) of adjacent ascending slopes and down-slope to and beyond the toe(s) of adjacent descending slopes). Also, the consultant shall demonstrate that the proposed hillside development will not affect adjacent sites or limit adjacent property owners’ ability to develop their sites.

1.4 **Roles of Engineering Geologist and Engineering.**

The investigation of the static and seismic stability of slopes is an interdisciplinary practice. To provide greater assurance that the hazards are properly identified, assessed, and mitigated, involvement of both an engineering geologist and geotechnical engineer is required. Analyses shall be performed only by or under the direct supervision of licensed professionals, qualified and competent in their respective area of practice. An engineering geologist shall provide appropriate input to the geotechnical engineer with respect to the potential impact of the geology, stratigraphy, and hydrologic conditions on the stability of the slope. The shear strength and other geotechnical earth material properties shall be evaluated by the geotechnical engineer. All slope stability should be performed by a qualified and licensed engineer or under the purview of a
licensed engineer. Ground motion parameters for use in seismic stability analysis may be provided by either the engineering geologist or geotechnical engineer.

2.0 GENERAL REQUIREMENTS
Except for the derivation of the input ground motion for pseudostatic and seismic deformation analyses (see Section 12), slope stability analyses and evaluations should be performed in general accordance with the latest version of Recommended Procedures for Implementation of DMG Special Publication 117, Guidelines for Analyzing and Mitigating Landslide Hazards in California (Blake et al., 2002). Procedures for developing input ground motions to be used in the city are described in Section 12.1.

3.0 SUBMITTALS
(a) Submittals for review shall include boring logs; geologic cross sections; trench and test pit logs; laboratory data (particularly shear strength test results, including individual stress-deformation plots from direct shear tests); discussions pertaining to how idealized subsurface conditions and shear strength parameters used for analyses were developed; analytical results, and summaries of the slope stability analyses and conclusions regarding slope stability.
(b) Subsurface geologic and groundwater conditions must be illustrated on geologic cross sections and must be utilized by the geotechnical engineer for the slope stability analyses. If on-site sewage or storm water disposal exists or is proposed, the slope stability analyses shall include the effects of the effluent plume on slope stability.
(c) The results of any slope stability analyses must be submitted with pertinent backup documentation (i.e., calculations, computer output, etc.). Printouts of input data, output data (if requested), and graphical plots must be submitted for each computer-aided slope stability analysis.

4.0 FACTORS OF SAFETY
The minimum acceptable static factor of safety is 1.5 for both gross and surficial slope stability. The minimum acceptable factor of safety for a calibrated pseudostatic analysis is 1.0 using the method of Stewart et al. (2003) (see Section 12.2).

5.0 LANDSLIDES
The evaluation of landslides generally requires quantitative slope stability analyses. Therefore, the standards presented herein are directly applicable to landslide investigation, and also constitute the minimum level of effort when performing landslide investigations. Evaluation of landslides shall be performed in the preliminary phase of hillside developments. Where landslides are present or suspected, sufficient subsurface exploration will be required to determine the basic geometry and stability of the landslide mass and the required stabilization measures. The depth of geologic exploration shall consider the regional geologic structure, the likely failure mode of the suspected failure, and past geomorphic conditions.

6.0 SITE INVESTIGATION AND GEOLOGIC STUDIES
(a) Adequate evaluation of slope stability for a given site requires thorough and comprehensive geologic and geotechnical engineering studies. These studies are a crucial component in the evaluation of slope stability. Geologic mapping and subsurface exploration are
normal parts of field investigation. Samples of earth materials are routinely obtained during subsurface exploration for geotechnical testing in the laboratory to determine the shear strength parameters and other pertinent engineering properties.

(b) In general, geologic studies for slope stability consist of the following fundamental phases:

(i) Study and review of published and unpublished geologic information (both regional and site specific).

(ii) Review and interpretation of available stereoscopic and oblique aerial photographs, DEMs, and LiDAR data.

(iii) Geologic field mapping, including, but not necessarily limited to, measurement of bedding, foliation, fracture, and fault attitudes and other parameters.

(iv) Documentation and evaluation of subsurface groundwater conditions (including effects of seasonal and longer-term natural fluctuations as well as landscape irrigation), surface water, on-site sewage disposal, and/or storm water disposal.

(v) Subsurface exploration.

(vi) Analysis of the geologic failure mechanisms that could occur at the site (e.g., mode of failure and construction of the critical geologic cross sections).

(vii) Presentation and analysis of the data, including an evaluation of the potential impact of geologic conditions on the project.

(c) Geologic/geotechnical reports shall demonstrate that each of the phases described in subsection 6.0(b) has been adequately performed and that the information obtained has been considered and logically evaluated. Minimum criteria for the performance of each phase are described and discussed in Blake et al. (2002).

7.0 SUBSURFACE EXPLORATION

The purpose of subsurface exploration is to identify potentially significant geologic materials and structures at a site and to provide samples for detailed laboratory characterization of materials from potentially critical zones. Subsurface exploration is almost always required and may be performed by a number of widely known techniques such as bucket-auger borings, conventional small-diameter borings, cone penetration testing (CPT), test pits, trenches, and/or geophysical techniques (see section 4.2 of Blake et al., 2002). In general, subsurface explorations should extend to a minimum depth of the anticipated failure planes or 2/3 the maximum height of the slope, whichever is greater. A discussion of the applicability of some subsurface exploration techniques follows.

7.1 Trenching. Subsurface exploration consisting of trenching has proven, in some cases, to be necessary when uncertainty exists regarding whether or not a particular landform is a landslide. Care must be exercised with this exploration method because landslides characteristically contain relatively large blocks of intact geologic units, which in a trench exposure could give the false impression that the geologic unit is “in-place.” Although limited to a depth of about 15 feet below existing grades, trenching has also proven to be a useful technique for verifying margins of landslides, although the geometry of a landslide can generally be readily determined from evaluation of stereoscopic aerial photographs. Once a landslide is identified, conventional subsurface exploration drilling techniques will be required (see Section 7.2 and 7.3). Slope stability analyses based solely on data obtained from trenches will not be accepted.
7.2 **Methods for Bedded Formations.**

(a) Conventional subsurface exploration techniques involving continuous core drilling with an oriented core barrel, test pits, and deep bucket-auger borings may be used to assess the subsurface soil and geologic conditions, particularly for geologic units with inclined bedding that includes weak layers.

(b) Particular attention must be paid to the presence or absence of weak layers (e.g., clay, claystone, silt, shale, or siltstone units) during the exploration. Unless adequately demonstrated (through comprehensive and detailed subsurface exploration) that weak (clay, claystone, silt, shale, or siltstone) layers (even as thin as 1/16-inch or less) are not present, a weak layer shall be assumed to possibly occur anywhere in the stratigraphic profile (i.e., ubiquitous weak clay beds).

(c) The depth of the subsurface exploration must be sufficient to assess the conditions at or below the level of the deepest potential failure surface possessing a factor of 1.5 or less. A preliminary slope stability analysis may need to be performed to assist in the planning of the subsurface exploration program.

7.3 **Other Geologic Units.** For alluvium, fill materials, or other soil units that do not contain weak interbeds, other exploration methods such as small-diameter borings (e.g., rotary wash or hollow-stem-auger) or cone penetration testing may be suitable.

8.0 **SOIL PARAMETERS**

Soil properties, including unit weight and shear strength parameters (cohesion and friction angle), may be based on conventional field and laboratory tests as well as on field performance. Where appropriate (i.e., for landslide slip surfaces, along bedding planes, for surficial stability analyses, etc.), laboratory tests for saturated, residual shear strengths must be performed. Estimation of the shear resistance along bedding (or landslide) planes normally requires an evaluation of saturated residual along-bedding-strength values of the weakest interbedded (or slide-plane) material encountered during the subsurface exploration, or in the absence of sufficient exploration, the weakest material that may be present, consistent with site geologic conditions. Strength parameters derived solely from CPT data may not be appropriate for slope-stability analysis in some cases, particularly for strengths along existing slip surfaces where residual strengths have developed. Additional guidance on the selection of strength parameters for slope stability analyses is contained in Blake et al. (2002).

8.1 **Residual Shear Strength Parameters.** Residual strength parameters may be determined using the direct shear or ring shear testing apparatus; however, ring shear tests are preferred. If performed properly, direct shear test results may approach ring-shear test results. The soil specimen must be subjected to a sufficient amount of deformation (e.g., a significant number of shearing cycles in the direct shear test or a significant amount of rotation in the ring shear test) to assure that residual strength has been developed. In the direct-shear and ring-shear tests, stress-deformation curves can be used to determine when a sufficient number of cycles of shearing have been performed by showing that no further significant drop in shear strength results with the addition of more cycles or more rotation. The stress-deformation curves obtained during the shear tests must be submitted with the other laboratory test results. It shall be recognized that for most clayey soils, the residual shear strength envelope is curved and passes through the origin.
(i.e., at zero normal stress there is zero shear strength). Any "apparent shear strength" increases resulting from a non-horizontal shear surface (i.e., ramping) or "bulldozing" in residual direct shear tests shall be discounted in the interpretation of the strength parameters.

8.2 Interpretation.

(a) The engineer will need to use considerable judgment in the selection of appropriate shear test methods and in the interpretation of the results to develop shear strength parameters commensurate with slope stability conditions to be evaluated. Scatter plots of shear strength data may need to be presented to allow for assessment of idealized parameters. The report shall summarize shear strength parameters used for slope stability analyses and describe the methodology used to interpret test results and estimate those parameters.

(b) Peak shear strengths may be used to represent across-bedding failure surfaces or compacted fill, in situations where strength degradations are not expected to occur (see guidelines in Blake et al., 2002). Where peak strengths cannot be relied upon, fully softened (or lower) strengths shall be used.

(c) Ultimate shear strength parameters shall be used in static slope stability analyses when there has not been past deformation. Residual shear strength parameters shall be used in static slope stability analyses when there has been past deformation.

(d) Averaged strength parameters may be appropriate for some across-bedding conditions, if sufficient representative samples have been carefully tested. Analyses for along-bedding or along-existing-landslide slip surfaces shall be based on lower-bound interpretations of residual shear strength parameters and comparison of those results to correlations, such as those of Stark et al. (2005).

9.0 SOIL CREEP

(a) The potential effects of soil creep shall be addressed where any proposed structure is planned in close proximity to an existing fill slope or natural slope. The potential effects on the proposed development shall be evaluated and mitigation measures proposed, including appropriate setback recommendations. Setback recommendations shall consider the potential affects of creep forces.

(b) All reports in hillside areas shall address the potential for surficial instability, debris/mudflow (Appendix E), rock falls (Appendix F), and soil creep on all slopes that may affect the proposed development or be affected by the proposed development. Stability of slopes along access roads shall be addressed.

10.0 GROSS STATIC STABILITY

Gross stability includes rotational and translational deep-seated failures of slopes or portions of slopes existing within or outside of but potentially affecting the proposed development. The following guidelines, in addition to those in Blake et al. (2002), shall be followed when evaluating slope stability:

(a) Stability shall be analyzed along cross sections depicting the most adverse conditions (e.g., highest slope, most adverse bedding planes, shallowest likely ground water table, and steepest slope). Often analyses are required for different conditions and for more than one cross section to demonstrate which condition is most adverse. When evaluating the stability of an existing landslide, analyses must also address the potential for partial reactivation. Inclinometers
may be used to help determine critical failure surfaces and, along with high-resolution GPS, the state of activity of existing landslides. The critical failure surfaces on each cross-section shall be identified, evaluated, and plotted on the large-scale cross section.

(b) If the long-term, static factor of safety is less than 1.5, mitigation measures will be required to bring the factor of safety up to the required level or the project may be redesigned to achieve a minimum factor of safety of 1.5.

(c) The temporary stability of excavations shall be evaluated and mitigation measures shall be recommended as necessary to obtain a minimum factor of safety of 1.3.

(d) Long-term stability shall be analyzed using the highest known or anticipated groundwater level based upon a groundwater assessment performed under the requirements of Section 6.0.

(e) Where back-calculation is appropriate, shear strengths utilized for design shall be no higher than the lowest strength computed using back calculation. If a consultant proposes to use shear strengths higher than the lowest back-calculated value, justification shall be required. Assumptions used in back-calculations regarding pre-sliding topography and groundwater conditions at failure must be discussed and justified.

(f) Reports shall describe how the shear strength testing methods used are appropriate in modeling field conditions and long-term performance of the subject slope. The utilized design shear strength values shall be justified with laboratory test data and geologic descriptions and history, along with past performance history, if known, of similar materials.

(g) Reports shall include shear strength test plots consisting of normal stress versus shear resistance (failure envelope). Plots of shear resistance versus displacement shall be provided for all residual and fully softened (ultimate) shear tests.

(h) The degree of saturation for all test specimens shall be reported. Direct shear tests on partially saturated samples may grossly overestimate the cohesion that can be mobilized when the material becomes saturated in the field. This potential shall be considered when selecting shear strength parameters. If the rate of shear displacement exceeds 0.005 inches per minute, the consultant shall provide data to demonstrate that the rate is sufficiently slow for drained conditions.

(i) Shear strength values higher than those obtained through site-specific laboratory tests generally will not be accepted.

(j) If direct shear or triaxial shear testing is not appropriate to model the strength of highly jointed and fractured rock masses, the design strengths shall be evaluated in a manner that considers overall rock mass quality and be consistent with rock mechanics practice.

(k) Shear strengths used in slope stability analyses shall be evaluated considering the natural variability of engineering characteristics inherent in earth materials. Multiple shear tests on each site material will typically be required.

(l) Direct shear tests do not always provide realistic strength values (Watry and Lade, 2000). Correlations between liquid limit, percent clay fraction, and strength (fully softened and residual) with published data (e.g., Stark and McCone, 2002) shall be performed to verify tested shear strength parameters. Strength values used in analyses that exceed those obtained by the correlation must be appropriately justified.

(m) Shear strengths for proposed fill slopes shall be evaluated using samples mixed and remolded to represent anticipated field conditions. Confirming strength testing may be required during grading.
(n) Where bedding planes are laterally unsupported on slopes, potential failures along the unsupported bedding planes shall be analyzed. Similarly, stability analyses shall be performed where bedding planes form a dip-slope or near-dip-slope using composite potential failure surfaces that consist of potential slip surfaces along bedding planes in the upper portions of the slope in combination with slip surfaces across bedding planes in the lower portions of the slope.

(o) The stability analysis shall include the effect of expected maximum moisture conditions on soil unit weight.

(p) For effective stress analyses, measured groundwater conditions adjusted to consider likely unfavorable conditions with respect to anticipated future groundwater levels, seepage, or pore pressure shall be included in the slope stability analyses.

(q) Tension crack development shall be considered in the analyses of potential failure surfaces. The height and location of the tension crack shall be determined by searching.

(r) Anticipated surcharge loads as well as external boundary pressures from water shall be included in the slope stability evaluations, as deemed appropriate.

(s) Analytical chart solutions may be used provided they were developed for conditions similar to those being analyzed. Generally though, computer-aided searching techniques shall be used, so that the potential failure surface with the lowest factor of safety can be located. Examples of typical searching techniques are illustrated on figures 9.1(a) through 9.1(f) in Blake et al. (2002). However, verification of the reasonableness of the analytical results is the responsibility of the geotechnical engineer and/or engineering geologist.

(t) The critical potential failure surface used in the analysis may be composed of circles, wedges, planes, or other shapes considered designed to yield the minimum factor of safety most appropriate for the geologic site conditions. The critical potential failure surface having the lowest factor of safety with respect to shearing resistance must be sought. Both the lowest factor of safety and the critical failure surface shall be documented.

11.0 SURFICIAL STABILITY OF SLOPES

Surficial slope stability refers to slumping and sliding of near-surface sediments and is most critical during the snowmelt and rainy season or when excessive landscape water is applied. The assessment of surficial slope stability shall be based on analysis procedures for stability of an infinite slope with seepage parallel to the slope surface or an alternate failure mode that would produce the minimum factor of safety. The minimum acceptable depth of saturation for surficial stability evaluation shall be four feet.

11.1 Applicability and Procedures.

(a) Conclusions shall be substantiated with appropriate data and analyses. Residual shear strengths comparable to actual field conditions shall be used in completing surficial stability analyses. Surficial stability analyses shall be performed under rapid draw-down conditions where appropriate (e.g., for debris and detention basins).

(b) Where 2:1 or steeper slopes have soil conditions that can result in the development of an infinite slope with parallel seepage, calculations shall be performed to demonstrate that the slope has a minimum static factor of safety $\phi > 1.5$, assuming a fully saturated 4-foot thickness. If conditions will not allow the development of a slope with parallel seepage, surficial slope stability analyses may not be required (provided the geologic/geotechnical reviewer concurs).
(c) Surficial slope stability analyses shall be performed for fill, cut, and natural slopes assuming an infinite slope with seepage parallel to the slope surface or other failure mode that would yield the minimum factor of safety against failure. A suggested procedure for evaluating surficial slope stability is presented in Blake et al. (2002).

11.2 **Soil Properties.** Soil properties used in surficial stability analyses shall be determined as noted in Section 8.1. For sites with deep slip surfaces, the guidelines given by Blake et al. (2002) should be followed.

11.3 **Seepage Conditions.** The minimum acceptable vertical depth for which seepage is parallel to the slope shall be applied is four feet for cut or fill slopes. Greater depths may be necessary when analyzing natural slopes that have significant thicknesses of loose surficial material.

12.0 **SEISMIC SLOPE STABILITY**

In addition to static slope stability analyses, slopes shall be evaluated for seismic slope stability as well. Acceptable methods for evaluating seismic slope stability using calibrated pseudo-static limit-equilibrium procedures and simplified methods (e.g., those based on Newmark, 1965) to estimate permanent seismic slope movements are summarized in Blake et al. (2002). Nonlinear, dynamic finite element/finite difference numerical methods also may be used to evaluate slope movements resulting from seismic events as long as the procedures, input data, and results are thoroughly documented, and deemed acceptable by the city.

12.1 **Ground Motion for Pseudostatic and Seismic Deformation Analyses.**

(a) The controlling fault that would most affect the city is the Salt Lake City segment of the Wasatch fault zone (WFZ). Repeated Holocene movement has been well documented along this segment (Black et al., 2003). Studies along the Salt Lake City segment of the WFZ indicate a recurrence interval of about 1,300 years and the most recent event being about 1,300 years ago (Lund, 2005). Based on the paleoseismic record of the Salt Lake City segment and assuming a time-dependent model, McCalpin (2002) estimates a conditional probability (using a log-normal renewal model) of 16.5% in the next 100 years (8.25% in the next 50 years) for a M>7 surface-faulting earthquake. Therefore, using a time-dependent rather than Poisson or random model for earthquake recurrence, the likelihood of a large surface-faulting earthquake on the Salt Lake City segment of the WFZ is relatively high and therefore the Salt Lake City segment is considered the primary controlling fault for deterministic analyses.

(b) Regarding design ground accelerations for seismic slope-stability analyses, the city prefers a probabilistic approach to determining the likelihood that different levels of ground motion will be exceeded at a particular site within a given time period. In order to more closely represent the seismic characteristics of the WFZ and better capture this possible high likelihood of a surface-faulting earthquake on the Salt Lake City segment, design ground motion parameters for seismic slope stability analyses shall be based on the peak accelerations with a 2.0 percent probability in 50 years (2,500-year return period). Peak bedrock ground motions can be readily obtained via the internet from the United States Geological Survey (USGS) National Seismic Hazard Maps, Data and Documentation web page (USGS, 2002), which is based on Frankel et al., 2002. PGAs obtained from the USGS (2002) web page should be adjusted for effects of
soil/rock (site-class) conditions in accordance with Seed et al. (2001). Site specific response analysis may also be used to develop PGA values as long as the procedures, input data, and results are thoroughly documented, and deemed acceptable by the city.

12.2 **Pseudo-Static Evaluations.**

(a) Pseudo-static methods for evaluating seismic slope stability are acceptable as long as minimum factors of safety are satisfied, and appropriate consideration is given in the selection of the seismic coefficient, kh, reduction in material shear strengths, and the factor of safety for pseudo-static conditions.

(b) Pseudo-static seismic slope stability analyses can be performed using the “screening analysis” procedure described in Blake et al. (2002). For that procedure a kh-value is selected from seismic source characteristics (modal magnitude, modal distance, and firm rock peak ground acceleration) and an acceptable level of deformation is specified. For this procedure, a factor of safety of 1.0 or greater is considered acceptable; otherwise, an analysis of permanent seismic slope deformation shall be performed.

12.3 **Permanent Seismic Slope Deformation.**

(a) For seismic slope stability analyses, estimates of permanent seismic displacement are preferred and may be performed using the procedures outlined in Blake et al. (2002). It should be noted that Bray and Rathje (1998), referenced in Blake et al. (2002), has been updated and superseded by Bray and Travasarou (2007), which is the city’s currently preferred method. For these analyses, calculated seismic displacements shall be 15 cm or less, or mitigation measures shall be proposed to limit calculated displacements to 15 cm or less.

(b) For specific projects, different levels of tolerable displacement may be possible, but site-specific conditions, which shall include the following, must be considered:

(i) The extent to which the displacements are localized or broadly distributed — broadly distributed shear deformations would generally be less damaging and more displacement could be allowed.

(ii) The displacement tolerance of the foundation system — stiff, well-reinforced foundations with lateral continuity of vertical support elements would be more resistant to damage (and hence could potentially tolerate larger displacements) than typical slabs-on-grade or foundation systems with individual spread footings.

(iii) The potential of the foundation soils to experience strain softening — slopes composed of soils likely to experience strain softening should be designed for relatively low displacements if peak strengths are used in the evaluation of k_p due to the potential for progressive failure, which could involve very large displacements following strain softening.

(c) In order to consider a threshold larger than 15 cm, the project consultant shall provide prior, acceptable justification to the city and obtain the city’s approval. Such justification shall demonstrate, to the city’s satisfaction, that the proposed project will achieve acceptable performance.

13.0 **WATER RETENTION BASINS AND FLOOD CONTROL CHANNELS**

For cut, fill, or natural slopes of water-retention basins or flood-control channels, slope stability analyses shall be performed. In addition to analyzing typical static and seismic slope
stability, those analyses shall consider the effects of rapid drawdown, if such a condition could develop. All proposed structures should be permitted under Utah Dam Safety rules, as applicable.

14.0 MITIGATION

(a) When slope stability hazards are determined to exist on a project, measures to mitigate impacts from those hazards shall be implemented. Some guidance regarding mitigation measures is provided in Blake et al. (2002). Slope stability mitigation methods include:

(i) hazard avoidance,
(ii) grading to improve slope stability,
(iii) reinforcement of the slope or improvement of the soil within the slope, and
(iv) reinforcement of the structure built on the slope to tolerate anticipated slope displacements.

(b) Where mitigation measures that are intended to add stabilizing forces to the slope are to be implemented, consideration should be given to strain compatibility.

14.1 Full Mitigation. Full mitigation of slope stability hazards shall be performed for developments in the city. Remedial measures that produce static factors of safety in excess of 1.5 and acceptable seismic displacement estimates shall be implemented as needed.

14.2 Partial Mitigation for Seismic Displacement Hazards. On some projects, or portions thereof (such as small structural additions, residential “infill projects”, non-habitable structures, and non-structural natural-slope areas), full mitigation of seismic slope displacements may not be possible, due to physical or economic constraints. In those cases, partial mitigation, to the extent that it prevents structural collapse, injury, and loss of life, may be possible if it can be provided consistent with IBC philosophies, and if it is approved by the city. The applicability of partial mitigations to specific projects will be evaluated on a case-by-case basis.

15.0 NOTICE OF GEOLOGIC HAZARD AND WAIVER OF LIABILITY.

For developments where full mitigation of seismic slope displacements is not implemented, a Notice of Geologic Hazard shall be recorded with the proposed development describing the displacement hazard at issue and the partial mitigation employed. The Notice shall clearly state that the seismic displacement hazard at the site has been reduced by the partial mitigation, but not totally eliminated. The Notice also shall provide that the owner assumes all risks, waives all claims against the city and its consultants, and indemnifies and holds the city and its consultants harmless from any and all claims arising from the partial mitigation of the seismic displacement hazard.
APPENDIX C - REFERENCES

California Division of Mines and Geology (CDMG) (1997), Guidelines for evaluating and mitigating seismic hazards in California, CDMG Special Publication (SP) 117.

FEMA (1997), NEHRP guidelines for the seismic rehabilitation of buildings: FEMA-273/October,

Newmark, N.M. (1965), Effects of earthquakes on dams and embankments, Geotechnique, v. 25, no. 4.

APPENDIX D

Minimum Standards for Liquefaction Investigations and Evaluations

Sensitive Lands Evaluation & Development Standards (SLEDS)
Chapter 19.72, **COTTONWOOD HEIGHTS CODE OF ORDINANCES**

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Purposes</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>References and Sources</td>
<td>1</td>
</tr>
<tr>
<td>1.3</td>
<td>Properties Requiring Liquefaction Analyses</td>
<td>2</td>
</tr>
<tr>
<td>1.4</td>
<td>Roles of Engineering Geology and Geotechnical Engineering</td>
<td>2</td>
</tr>
<tr>
<td>1.5</td>
<td>Minimum Qualifications of the Licensed Professional</td>
<td>3</td>
</tr>
<tr>
<td>2.0</td>
<td>GENERAL REQUIREMENTS</td>
<td>3</td>
</tr>
<tr>
<td>3.0</td>
<td>PRELIMINARY SCREENING FOR LIQUEFACTION</td>
<td>3</td>
</tr>
<tr>
<td>4.0</td>
<td>FIELD INVESTIGATIONS</td>
<td>4</td>
</tr>
<tr>
<td>4.1</td>
<td>Geologic Reconnaissance</td>
<td>4</td>
</tr>
<tr>
<td>4.2</td>
<td>Subsurface Explorations</td>
<td>4</td>
</tr>
<tr>
<td>5.0</td>
<td>GROUND MOTION FOR LIQUEFACTION SUSCEPTIBILITY AND GROUND DEFORMATION ANALYSES</td>
<td>5</td>
</tr>
<tr>
<td>6.0</td>
<td>REMEDIAL DESIGN</td>
<td>6</td>
</tr>
<tr>
<td>7.0</td>
<td>SUBMITTALS</td>
<td>6</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

The procedures outlined in this Appendix D are intended to provide consultants with a general outline for performing liquefaction studies and to specify the city’s expectations concerning such studies. These standards constitute the minimum level of effort required in conducting liquefaction studies in the city. Considering the complexity inherent in performing liquefaction studies, additional effort beyond the minimum standards presented herein may be required at some sites to adequately address the liquefaction potential at the site. The information presented in this Appendix D does not relieve consultants of their duty to perform additional geologic or geotechnical engineering analyses that is required by the city or otherwise reasonably necessary to adequately assess the liquefaction potential at a site.

1.1 Purposes. The purposes of establishing minimum standards for liquefaction investigations in the city are to:

(a) Protect the health, safety, welfare, and property of the public by minimizing the potentially adverse effects of liquefaction and related hazards;

(b) Assist property owners and land developers in conducting reasonable and adequate studies;

(c) Provide consulting engineering geologists and geotechnical engineers with a common basis for preparing proposals, conducting studies, and mitigation; and

(d) Provide an objective framework for regulatory review of liquefaction study reports.

1.2 References and Sources. The minimum standards presented herein were developed, in part, from the following sources:

(a) CDMG Special Publication 117, Guidelines for evaluating and mitigating seismic hazards in California (1997).

(b) Recommended procedures for implementation of DMG special publication 117, guidelines for analyzing and mitigating liquefaction hazards in California (Martin and Lew, 1999).

(e) Salt Lake County geologic hazards ordinance (2002).

(f) Southern California Earthquake Center (1999), Recommended Procedures for Implementation of DMG Special Publication 117, Guidelines for analyzing and mitigating liquefaction in California.
1.3 **Properties Requiring Liquefaction Analyses.** The Liquefaction Hazard Study Area Map (Map 3 in Appendix A of Chapter 19.72 of this code) depicts generalized liquefaction susceptibility for the city, and shall be used to determine whether or not a site-specific liquefaction assessment is required for a particular project.

(a) The Liquefaction Hazard Study Area Map is based on a regional-scale investigation of Salt Lake County; therefore, the liquefaction potential at a specific site may be different (higher or lower) than the liquefaction potential suggested by the map. Such map may not identify all areas that have potential for liquefaction; a site located outside of an area of required study is not necessarily free from liquefaction hazard, and the study areas do not always include lateral spread run-out areas. The Liquefaction Hazard Study Area Map is available from the city’s planning department.

(b) Chapter 19.72 requires a site-specific liquefaction study to be performed prior to approval of a project based on the liquefaction potential. The liquefaction potential for each individual soil layer in a CPT sounding or at the sampling frequency interval in a boring should be assessed. If the factor of safety for liquefaction is less than 1, then an estimate of the settlement for each layer should be completed. The total anticipated settlement should be defined in the analysis and report. All liquefaction analyses should be completed in accordance with DMG Special Publication 117 (1999), as amended or superseded.

1.4 **Roles of Engineering Geology and Geotechnical Engineering.**

(a) The study of liquefaction hazard is an interdisciplinary practice. The site investigation report must be prepared by a qualified engineering geologist or geotechnical engineer, who must have competence in the field of seismic hazard evaluation and mitigation, and be reviewed by a qualified geotechnical engineer, also competent in the field of seismic hazard evaluation and mitigation.

(b) Because of the differing expertise and abilities of qualified engineering geologists and geotechnical engineers, the scope of the site investigation report for the project may require that both types of professionals prepare and review the report, each practicing in the area of their expertise. Involvement of both a qualified engineering geologist and geotechnical engineer will generally provide greater assurance that the hazard is properly identified, assessed, and mitigated.

(c) Liquefaction analyses are the responsibility of the geotechnical engineer, although the engineering geologist should be involved in the application of screening criteria (section 3.0, steps 1 and 2) and general geologic site evaluation (section 4.1) to map the likely extent of liquefiable deposits and shallow groundwater. Engineering properties of earth material shall be evaluated by the geotechnical engineer. The performance of the quantitative liquefaction analysis resulting in a numerical factor of safety and quantitative assessment of settlement and liquefaction-induced permanent ground displacement shall be performed by geotechnical engineers. The geotechnical and civil engineers shall develop all mitigation and design recommendations. Ground motion parameters for use in quantitative liquefaction analyses may be provided by either the engineering geologist or the geotechnical engineer.
1.5 **Minimum Qualifications of the Licensed Professional.** Liquefaction analyses must be performed by engineering geologists and geotechnical engineers, qualified as provided in Chapter 19.72.

2.0 **GENERAL REQUIREMENTS**

Except for the derivation of input ground motion (see Section 5.0, below), liquefaction studies should be performed in general accordance with the latest version of Recommended Procedures for Implementation of DMG Special Publication 117, Guidelines for Analyzing and Mitigating Liquefaction in California (Martin and Lew, 1999). Additional protocol for liquefaction studies is provided in Youd and Idriss (1997), cited above.

3.0 **PRELIMINARY SCREENING FOR LIQUEFACTION**

(a) The Liquefaction Hazard Study Area Map is based on broad regional studies and does not replace site-specific studies. The fact that a site is located within a Liquefaction Hazard Study Area does not mean that there is a significant liquefaction potential at the site, only that a study shall be performed to determine if such potential is present.

(b) Soil liquefaction is caused by strong seismic ground shaking where saturated, cohesionless, granular soil undergoes a significant loss in shear strength that can result in settlement and permanent ground displacement. Surface effects of liquefaction include settlement, bearing capacity failure, ground oscillations, lateral spread and flow failure. It has been well documented that soil liquefaction may occur in clean sands, silty sands, sandy silt, non-plastic silts and gravelly soils. Research shows that the following conditions must be present for liquefaction to occur:

(i) Soils must be submerged below the water table;
(ii) Soils must be loose to moderately dense;
(iii) Ground shaking must be relatively intense; and
(iv) The duration of ground shaking must be sufficient for the soils to generate seismically-induced excess pore water pressure and lose their shearing resistance.

(c) The following screening criteria may be applied to determine if further quantitative evaluation of liquefaction hazard is required:

(i) If the estimated maximum past, current, and future groundwater levels (i.e., the highest groundwater level applicable for liquefaction analyses) are determined to be deeper than 50 feet below the existing ground surface or proposed finished grade (whichever is deeper), liquefaction studies are not required. For soil materials that are located above the level of the groundwater, a quantitative assessment of seismically induced settlement is required.

(ii) If “bedrock” or similar lithified formational material underlies the site, those materials need not be considered liquefiable and no analysis of their liquefaction potential is necessary.

(iii) If the corrected standard penetration blow count, (N1)60, is greater than or equal to 33 in all samples with a sufficient number of tests, liquefaction assessments are not required. If cone penetration test soundings are made, the corrected cone penetration
test tip resistance, qc1N, should be greater than or equal to 180 tsf in all soundings in sand materials, otherwise liquefaction assessments are needed.

(d) If plastic soil (PI ≥ 20) materials are encountered during site exploration, those materials may be considered non-liquefiable. Additional acceptable screening criteria regarding the effects of plasticity on liquefaction susceptibility are presented in Boulanger and Idriss (2004), Bray and Sancio (2006), and Seed and others (2003).

(e) If the screening investigation clearly demonstrates the absence of liquefaction hazards at a project site and the City concurs, the screening investigation will satisfy the site study report requirement for liquefaction hazards. If not, a quantitative evaluation is required to assess the liquefaction hazards.

(f) An important part of a liquefaction analysis is the potential for lateral spreading. Any open face and/or sloped sites should be assessed for the potential for lateral spreading. Mitigation measures should be provided in the analysis and report with respect to this hazard.

4.0 FIELD INVESTIGATIONS

Geotechnical field investigations are routinely performed for new projects as part of the normal development and design process. Geologic reconnaissance and subsurface explorations are normally performed as part of the field exploration program even when liquefaction does not need to be investigated.

4.1 Geologic Reconnaissance.

(a) Geologic research and reconnaissance are important to provide information to define the extent of unconsolidated deposits that may be prone to liquefaction. Such information should be presented on geologic maps and cross sections and provide a description of the formations present at the site that includes the nature, thickness, and origin of Quaternary deposits with liquefaction potential. There also should be an analysis of groundwater conditions at the site that includes the highest recorded water level and the highest water level likely to occur under the most adverse foreseeable conditions in the future.

(b) During the field investigation, the engineering geologist should map the limits of unconsolidated deposits with liquefaction potential. Liquefaction typically occurs in cohesionless silt, sand, and fine-grained gravel deposits of Holocene to late Pleistocene age in areas where the groundwater is shallower than about 50 feet.

(c) Shallow groundwater may exist for a variety of reasons, some of which are of natural and or manmade origin. Landscape irrigation, on-site sewage disposal, and unlined manmade lakes reservoirs, and storm-water detention basins may create a shallow groundwater table in sediments that were previously unsaturated.

4.2 Subsurface Explorations.

(a) Subsurface explorations shall consist of drilled-borings and/or cone penetration tests (CPTs). The exploration program shall be planned to determine the soil stratigraphy, groundwater level, and indices that could be used to evaluate the potential
for liquefaction by either in situ testing or by laboratory testing of soil samples. Borings and CPT soundings must penetrate a minimum of 50 feet below final ground surface.

(b) For saturated cohesionless soils where the SPT (N₁₆₀) values are less than 15, or where CPT tip resistances are below 60 tsf, grain-size analyses, hydrometers tests, and Atterberg Limits tests shall be performed on these soils to further evaluate their potential for permanent ground displacement (Youd et al., 2002) and other forms of liquefaction-induced ground failure and settlement. In addition, it is also recommended that these same tests be performed on saturated cohesionless soils with SPT (N₁₆₀) values between 15 and 30 to further evaluate the potential for liquefaction-induced settlement.

c) Where a structure may have subterranean construction or deep foundations (e.g., caissons or piles), the depth of investigation should extend to a depth that is a minimum of 20 feet (6 m) below the lowest expected foundation level (e.g., caisson bottom or pile tip) or 50 feet (15 m) below the existing ground surface or lowest proposed finished grade, whichever is deeper. If, during the study, the indices to evaluate liquefaction indicate that the liquefaction potential may extend below that depth, the exploration should be continued until a significant thickness (at least 10 feet or 3 m, to the extent possible) of nonliquefiable soils are encountered.

5.0 GROUND MOTION FOR LIQUEFACTION SUSCEPTIBILITY AND GROUND DEFORMATION ANALYSES

(a) The two controlling faults that would most affect the city are the Salt Lake City and Provo segments of the Wasatch Fault Zone (WFZ). Repeated Holocene movement has been well documented along both segments (Black and others, 2003). Studies along the Provo segment of the WFZ indicate a recurrence interval of about 1150 years (Olig, and others, 2006; later revised, Olig, 2007) and the most recent event being about 500 to 650 years ago (Black and others, 2003; Olig, and others, 2006). Studies along the Salt Lake City segment of the WFZ indicate a recurrence interval of about 1300 years and the most recent event being about 1300 years ago (Lund, 2005). Based on the paleoseismic record of the Salt Lake City segment and assuming a time-dependent model, McCalpin (2002) estimates a conditional probability (using a log-normal renewal model) of 16.5% in the next 100 years (8.25% in the next 50 years) for a M>7 surface-faulting earthquake. Therefore, using a time-dependent rather than Poisson or random model for earthquake recurrence, the likelihood of a large surface-faulting earthquake on the Salt Lake City segment of the WFZ is relatively high and therefore the Salt Lake City segment is considered the primary controlling fault for deterministic analyses.

(b) Concerning design ground accelerations for liquefaction analyses, the city prefers a probabilistic approach to determining the likelihood that different levels of ground motion will be exceeded at a particular site within a given time period. In order to more closely represent the seismic characteristics of the WFZ and to better capture this possible high likelihood of a surface-faulting earthquake on the Salt Lake City segment, design ground motion parameters for liquefaction analyses shall be based on the peak accelerations with a 2.0 percent probability in 50 years (2,500-year return period). Peak bedrock ground motions can be readily obtained via the internet from the United States Geological Survey (USGS) National Seismic Hazard Maps, Data and Documentation
web page (USGS, 2002), which is based on Frankel and others (2002). PGAs obtained from the USGS (2002) web page should be adjusted for effects of soil/rock (site-class) conditions in accordance with Seed and others (2001) or other appropriate methods that consider the site-specific soil conditions and their potential for amplification/deamplification of the high frequency strong motion.

6.0 REMEDIAL DESIGN

Sites, facilities, buildings, structures and utilities that are founded on or traverse liquefiable soils may require further remedial design and/or relocation to avoid liquefaction-induced damage. These should be investigated and evaluated on a site-specific basis with sufficient geologic and geotechnical evaluations to support the remedial design and/or mitigative plan. This design or plan may include changes/modifications to the soil, foundation system, structural frame or support of the building, etc. and should be reviewed and approved by the city.

7.0 SUBMITTALS

(a) Submittals for review shall include boring logs; geologic cross-sections; laboratory data; discussions pertaining to how idealized subsurface conditions and parameters used for analyses were developed; analytical results, including computer output files (on request); and summaries of the liquefaction analyses and conclusions regarding liquefaction potential and likely types and amounts of ground failure.

(b) Subsurface geologic and groundwater conditions must be illustrated on geologic cross-sections and must be utilized by the geotechnical engineer for the liquefaction analyses. If on-site sewage or storm-water disposal exists or is proposed, the liquefaction analyses shall include the effects of the effluent plume on liquefaction potential.

(c) The results of any liquefaction analyses must be submitted with pertinent backup documentation (i.e., calculations, computer output, etc.). Printouts of input data, output data (on request), and graphical plots must be submitted for each computer-aided liquefaction analysis. In addition, input data files, recorded on diskettes, CDs, or other electronic media, may be requested to facilitate the city's review.
APPENDIX E

Minimum Standards for Debris Flow Hazard Studies

Sensitive Lands Evaluation & Development Standards (SLEDS)
Chapter 19.72, COTTONWOOD HEIGHTS CODE OF ORDINANCES

Debris-flow reports shall follow general guidance contained in "Guidelines for the geologic evaluation of debris-flow hazards on alluvial fans in Utah," Utah Geological Survey Miscellaneous Publication 05-6. Debris-flow hazard analyses and mitigation measures may require contributions from hydrologists as well as qualified engineering geologists and geotechnical engineers.
APPENDIX F

Minimum Standards for
Rock Fall Hazard Studies

Sensitive Lands Evaluation & Development Standards (SLEDS)
Chapter 19.72, COTTONWOOD HEIGHTS CODE OF ORDINANCES

APPENDIX G

Groundwater Source Protection

Sensitive Lands Evaluation & Development Standards (SLEDS)
Chapter 19.72, COTTONWOOD HEIGHTS CODE OF ORDINANCES

Groundwater source protection requirements in the city are contained in Chapter 17.30,
COTTONWOOD HEIGHTS CODE OF ORDINANCES.

549281.2
APPENDIX H

Foundation Excavation Observation Standards

Sensitive Lands Evaluation & Development Standards (SLEDS)
Chapter 19.72, COTTONWOOD HEIGHTS CODE OF ORDINANCES

TABLE OF CONTENTS

1.0 INTRODUCTION... 1
2.0 GENERAL REQUIREMENTS... 1
3.0 SUBMITTALS... 1
4.0 SITE INVESTIGATION AND SOIL INVESTIGATION STUDIES......................... 2
5.0 MITIGATION... 3
6.0 NOTICE OF GEOLOGIC HAZARD AND WAIVER OF LIABILITY 3
1.0 INTRODUCTION

1.1 Introduction. The procedures contained in this appendix are intended to provide consultants with a general outline for performing quantitative foundation excavation observation studies and reports for the development of structures within Cottonwood Heights (the “city”). These standards constitute the minimum level of effort required in conducting these studies. The information presented herein does not relieve consultants of their duty to identify and perform additional geologic or engineering analyses they believe are necessary to assess the suitability of development at a site.

1.2 Purposes. The purposes for establishing minimum standards for foundation excavation observation studies are to:

(a) Protect the health, safety, welfare, and property of the public by minimizing the potentially adverse effects of development on unsuitable soils and/or high groundwater;
(b) Assist property owners, contractors and land developers in conducting reasonable and adequate foundation excavation observation studies; and
(c) Ensure that the recommendations from the subdivision’s geotechnical soils investigation are followed. If no report exists, ensure that a licensed engineer observes the foundation excavation and performs any necessary analyses to determine the suitability of the soils for the proposed building. The engineer shall report that the site is suitable for the proposed structure and that all recommended mitigation has been performed to render the site buildable.

1.3 Areas requiring foundation excavation observation reports. A foundation excavation observation report shall be performed for all proposed development or redevelopment within the city.

1.4 Roles of professionals. Analyses of soils that shall support a structure shall be performed only by or under the direct supervision of licensed professionals, qualified and competent in their respective area of practice.

2.0 GENERAL REQUIREMENTS

The expertise of qualified professional engineers, retained at the developer’s cost, is required to verify the suitability of the soil for the construction of a proposed structure and ensure that the actual in-situ soil material is consistent with previous reports and ensure that the recommendations from those reports have been followed. If no previous reports have been prepared, an engineer shall make appropriate analyses of the in-situ material to determine the suitability of the site for construction and report that all necessary mitigation measures have been performed.

3.0 SUBMITTALS

3.1 Explanatory letter. A letter that states that the site is suitable for development shall be accompanied by an appendix with all pertinent data that was used to determine the suitability of
the site for development, include boring logs; geologic cross sections; trench and test pit logs; laboratory data (Atterberg limits, plasticity, soil classification, soil bearing capacity, shear strength test results, density test results etc.); and a discussion regarding the suitability of the site for development. The appendix will contain recommendations for the footings and foundation of the structure such as backfill requirements, additional compaction, drainage, elevation, pilings, bedrock, or any other mitigation measure to meet current building codes, ensure adequate soil bearing capacity, prevent flooding or other adverse factors.

3.2 **Subsurface conditions.** Subsurface groundwater conditions must be considered and must include an estimate of the maximum anticipated groundwater elevation. If the site contains sewage or storm water infrastructure or is proposed, the recommendations shall reflect the potential impact from a 10-year and 100-year storm event.

3.3 **Background documentation.** The results of any foundation excavation observation study must be submitted with pertinent backup documentation such as soil logs, laboratory test data, calculations, photographs, measurements and other pertinent data.

4.0 **SITE INVESTIGATION AND SOIL INVESTIGATION STUDIES**

Adequate evaluation and comprehensive geotechnical engineering studies shall be used to evaluate the suitability of the soil to support the proposed building structure. As directed by the engineer, adequate soil sampling of the subsurface material may be necessary to perform geotechnical testing to determine the soil bearing capacity and other strength parameters to determine the suitability of the soil. In general, the foundation observation evaluation shall follow the following phases:

4.1 **Review.** Review the soils report or geotechnical investigation that has been performed for the subject site. Understand all relevant geotechnical features related to the property, including groundwater, soil bearing capacity, soil type, drainage, proximity to a flood zone, and all other pertinent geologic factors.

4.2 **Excavation.** Conduct a foundation excavation inspection prior to the placement of footings. Assess the potential for groundwater below the proposed footings as necessary.

4.3 **Observation and assessment.** Observe that all of the recommendations from the previous reports have been implemented. Observe that the soil properties are consistent with the findings and assumptions in the report. Assess the groundwater potential and observe that the elevation and drainage is suitable for the proposed structure.

4.4 **Documentation and evaluation.** Documentation and evaluation of subsurface groundwater conditions (including effects of seasonal and longer-term natural fluctuations as well as landscape irrigation), surface water, on-site sewage disposal, and/or storm water disposal.
4.5 **Additional suitability analysis.** If no previous geotechnical report has been performed, the licensed engineer shall perform whatever work is deemed necessary to evaluate the suitability of the site for development.

4.6 **Report.** Prepare a signed and wet stamped letter to the city that the site has been observed and has been deemed suitable for the proposed development. Once this letter has been received and accepted by the city, the placement of footings may commence.

5.0 **MITIGATION**

If in-situ soil conditions are inconsistent with previous reports and recommendations, a qualified engineer shall perform whatever tests are necessary to assess if the site is suitable for development. If the site is not suitable for development, an engineer may develop mitigation measures and shall report that these measures have been met in a signed and wet stamped letter to the city prior to the construction of footings.

6.0 **NOTICE OF GEOLOGIC HAZARD AND WAIVER OF LIABILITY**

For developments where full mitigation of recommended measures is not implemented, a notice of geotechnical hazard acceptable to the city shall be recorded with the proposed development describing the hazard at issue and the partial mitigation employed. The notice shall clearly state that the hazard at the site has been reduced by the partial mitigation, but not totally eliminated. In addition, the owner shall (a) be deemed to have assumed all risks and waived all claims against the city and its officers, employees, agents, contractors, consultants and other related parties consultants, and (b) indemnify and hold the city and such related parties harmless from any and all claims arising from the partial mitigation of the seismic displacement hazard.
APPENDIX I

Riparian Corridor and Watershed Protection

Sensitive Lands Evaluation & Development Standards (SLEDS)
Chapter 19.72, COTTONWOOD HEIGHTS CODE OF ORDINANCES

Riparian corridor and watershed protection requirements in the city are contained in Chapter 17.31, COTTONWOOD HEIGHTS CODE OF ORDINANCES.
COTTONWOOD HEIGHTS

RESOLUTION NO. 2015-01

A RESOLUTION APPROVING AN INTERLOCAL AGREEMENT WITH THE REDEVELOPMENT AGENCY OF SALT LAKE COUNTY FOR CHANGE OF PROJECT AREAS

WHEREAS, the Community Development and Renewal Agency (the “City Agency”) of the city of Cottonwood Heights (the “City”) was created to transact the business and exercise all of the powers provided for in the Limited Purpose Local Government Entities - Community Development and Renewal Agencies act (Title 17C, Chapters 1 through 4, Utah Code Annotated (1953 as amended) and any subsequent, replacement or amended law or act (the “CDRA Act”); and

WHEREAS, the Redevelopment Agency of Salt Lake County (the "County Agency") was created by Salt Lake County (the “County”) pursuant to the provisions of Utah redevelopment law and the County Agency continues to operate under the CDRA Act, whereunder it is authorized to conduct urban renewal, economic development, and community development activities within the County; and

WHEREAS, the County Agency and City Agency are “public agencies” under the Utah Interlocal Cooperation Act, Utah Code Ann. §§ 11-13-101 et seq. (the “Cooperation Act”), and, as such, are authorized by the Cooperation Act to enter into agreements to act jointly and cooperatively on the basis of mutual advantage; and

WHEREAS, the County Agency approved and the County adopted the “Fort Union Neighborhood Development Plan” dated August 13, 1990 (the “Fort Union Project Area Plan”) for the geographic area specified therein (the “Fort Union Project Area”) on October 22, 1990 and October 24, 1990, respectively; and

WHEREAS, the County Agency approved and the County adopted the “Cottonwood Corporate Center Economic Development Plan” dated February 20, 1997 (the “CCC Project Area Plan”) for the geographic area specified therein (the “CCC Project Area”) on July 30, 1997 and October 6, 1997, respectively; and

WHEREAS, the geographic area in which the Fort Union Project Area and the CCC Project Area (collectively, the "Project Areas") are located became part of the City as a result of the City’s incorporation in January 2005 (a portion of the CCC Project Area is also located in City of Holladay, which was incorporated in November 1999); and

WHEREAS, prior to the City’s incorporation, the County Agency collected tax increment from the Project Areas and performed redevelopment activities in the Project Areas; and

WHEREAS, pursuant to Section 17C-1-205 of the CDRA Act, the City Agency and the City now desire to adopt the Project Areas as their own urban renewal and economic development project areas and the County Agency desires to transfer and assign to the City Agency all of its real property, rights, indebtedness, obligations, tax increment, and other assets and liabilities related to
the Project Areas on the terms and conditions specified in a proposed interlocal agreement (the "Agreement") between the County Agency and the City Agency; and

WHEREAS, the City Agency’s governing board (the “Board”) met on 13 January 2015 to consider, among other things, approving the City Agency’s entry into the Agreement; and

WHEREAS, the Board has reviewed the form of the Agreement, a photocopy of which is annexed hereto; and

WHEREAS, after careful consideration, the Board has determined that it is in the best interests of the City Agency to approve the City Agency’s entry into the Agreement as proposed;

NOW, THEREFORE, BE IT RESOLVED by the governing board of the Cottonwood Heights Community Development and Renewal Agency that the attached Agreement with the County Agency be, and hereby is, approved, and that the City Agency’s chairman and secretary are authorized and directed to execute and deliver the Agreement on behalf of the City Agency; and

BE IT FURTHER RESOLVED by the governing board of the Cottonwood Heights Community Development and Renewal Agency that the Agreement is so approved with such additions, modification, deletions or other changes as within one year hereafter may be deemed necessary or advisable by the chairman of the Board and/or the City Agency’s chief executive officer in consultation with the City Agency’s legal counsel; and

BE IT FURTHER RESOLVED by the governing board of the Cottonwood Heights Community Development and Renewal Agency that the Agency shall provide such notices, make such filings and perform such other acts as may be required by applicable law in connection with approval and adoption of the Agreement.

This Resolution, assigned no. 2015-01, and the Agreement shall take effect following the City Agency’s provision of such notices and filings as may be required by the CDRA Act.

PASSED AND APPROVED effective 13 January 2015.

ATTEST: COTTONWOOD HEIGHTS COMMUNITY DEVELOPMENT AND RENEWAL AGENCY

By: ________________________________ By ________________________________

Kory Solorio, Secretary Kelvyn H. Cullimore, Jr., Chairman

VOTING:

Kelvyn H. Cullimore, Jr. Yea ___ Nay ___
Michael L. Shelton Yea ___ Nay ___
J. Scott Bracken Yea ___ Nay ___
Michael J. Peterson Yea ___ Nay ___
Tee W. Tyler Yea ___ Nay ___
DEPOSITED in the office of the Secretary of the Cottonwood Heights Community Development and Renewal Agency this 13th day of January 2015.
COTTONWOOD HEIGHTS

RESOLUTION NO. 2015-02

A RESOLUTION APPROVING A FUNDING AGREEMENT WITH
UTAH DEPARTMENT OF HEALTH FOR PLACEMENT OF
AUTOMATED EXTERNAL DEFIBRILLATORS

WHEREAS, the city council (the “Council”) of the city of Cottonwood Heights (the “City”) met on 13 January 2015 to consider, among other things, approving an agreement (the “Agreement”) with Utah Department of Health (“DOH”) whereunder DOH would provide funding for placement of automated external defibrillators in patrol cars of the City’s police department; and

WHEREAS, the Council has reviewed the form of the Agreement, a photocopy of which is annexed hereto as an exhibit; and

WHEREAS, after careful consideration, the Council has determined that it is in the best interests of the health, safety and welfare of the citizens of the City to approve the City’s entry into the Agreement as proposed;

NOW, THEREFORE, BE IT RESOLVED by the city council of Cottonwood Heights that the attached Agreement with Provider is hereby approved and ratified, and that the City’s mayor and recorder are authorized and directed to execute and deliver the Agreement on behalf of the City.

This Resolution, assigned no. 2015-02, shall take effect immediately upon passage.

PASSED AND APPROVED this 13th day of January 2015.

COTTONWOOD HEIGHTS CITY COUNCIL

By ______________________________________
Kelvyn H. Cullimore, Jr., Mayor

ATTEST:

Kory Solorio, Recorder

VOTING:

Kelvyn H. Cullimore, Jr. Yea ___ Nay ___
Michael L. Shelton Yea ___ Nay ___
J. Scott Bracken Yea ___ Nay ___
Michael J. Peterson Yea ___ Nay ___
Tee W. Tyler Yea ___ Nay ___

DEPOSITED in the office of the City Recorder this 13th day of January 2015.

RECORDED this ___ day of January 2015.
1434403
Department Log Number

1. CONTRACT NAME: The name of this contract is Cottonwood Heights Police Dept FY15 AED Grant.

2. CONTRACTING PARTIES: This contract is between the Utah Department of Health (DEPARTMENT) and the following CONTRACTOR:

COTTONWOOD HEIGHTS CITY
1265 E Ft. Union #250
UT 84047, Cottonwood Heights

Vendor ID: VC0000107970
Commodity Code: 99999

3. GENERAL PURPOSE OF CONTRACT: The general purpose of this contract is to provide funding to assist with the placement of Automated External Defibrillators (AED) in police cars, grade K-12.

4. CONTRACT PERIOD: The service period of this contract is 11/01/2014 through 05/01/2015, unless terminated or extended by agreement in accordance with the terms and conditions of this contract. The DEPARTMENT may extend this contract annually 1 times by means of an amendment to this contract. Any extension must be in writing.

5. CONTRACT AMOUNT: The DEPARTMENT agrees to pay $1,426.09 in accordance with the provisions of this contract.

6. CONTRACT INQUIRIES: Inquiries regarding this Contract shall be directed to the following individuals:

CONTRACTOR

Paul Brenneman
(801) 944-7100
pbrenneman@ch.ut.gov

DEPARTMENT

Family Health and Preparedness
Emergency Medical Services
John Housekeeper
(801) 273-6638
7. REFERENCE TO ATTACHMENTS INCLUDED AS PART OF THIS CONTRACT:

Attachment A: Terms

8. DOCUMENTS INCORPORATED INTO THIS CONTRACT BY REFERENCE BUT NOT ATTACHED:
A. All other governmental laws, regulations, or actions applicable to services provided herein.
B. All Assurances and all responses to bids as provided by the CONTRACTOR.

9. This contract, its attachments, and all documents incorporated by reference constitute the entire agreement between the parties and supersedes all prior written or oral agreements between the parties relating to the subject matter of this contract.

Intentionally Left Blank
Contract with Utah Department of Health and COTTONWOOD HEIGHTS CITY, Log # 1434403

IN WITNESS WHEREOF, the parties enter into this agreement.

CONTRACTOR

By: ____________________ ________
 Paul Brenneman
 Assistant Chief

STATE

By: ____________________
 Shari A. Watkins, C.P.A.
 Director, Office Fiscal Operations

Date
This agreement and its terms hereto, when approved and signed by all concerned parties, constitutes an agreement by and between the applicant (Grantee) and the Utah Department of Health, Division of Family Health and Preparedness, Bureau of Emergency Medical Services (the Department), to perform in accordance with its terms.

1. Funding – Grantee may expend grant funds only for the following:
 a. an Automated External Defibrillator (AED);
 b. wall-mounted AED cabinet;
 c. AED sign; and/or
 d. a durable carrying/storage case.

2. Location Registration – As set forth in Utah Code Annotated Section 26-8b-301 et seq., as currently adopted and hereinafter amended, the Grantee shall report the name, address and telephone number of the AED owner, and the exact location of the AED, in writing or if available through the web-based AED registration form, to the designated emergency medical dispatch center that provides emergency medical dispatch service for the location where the AED is located.

 Exception: AEDs which are not at a permanent location, such as those in vehicles or on a portable stand, are exempt from the reporting requirement.

3. Grant Year Limitation – The Department shall reimburse the Grantee upon receipt of documented proof of purchase and proof of Grantee’s payment for the items. Grantee must expend the required matching percentage of the total costs of the budget line item. Grantee must expend the grant funds during the grant year, November 1, 2014-May 1, 2015. Grantee shall submit final claims to the Department no later than May 1, 2015. The grant amount stated herein shall be the total amount the Department pays to grantees for the items covered by this grant. Grantee may not use grant funds to pay for items acquired or committed to be acquired or delivered prior to or after the grant year. Grantee must take delivery and pay for all items supported by grant funds within the period of the grant year.

4. Equipment - Title to all equipment purchased under this grant shall be vested in Grantee.

5. Fiscal Records – Grantee shall maintain complete and detailed accounting records of all costs incurred under this grant, including documentation of all purchases of item(s) supported by this grant for at least three years after the end of the grant year. State or Department auditors and staff shall have access to all records of Grantee that may deal with this grant.

6. No Business Relationship – This grant creates no joint business or government relationship between the parties. Neither party has any authority, express or implied, to bind the other to any agreement, settlement, liability, or understanding whatsoever. Persons employed by Grantee and acting under the direction of Grantee are not employees or agents of the Department.

7. Indemnity – Grantee shall indemnify the Department from all claims arising out of the use of the grant funds or materials supported by the grant funds. The Department is a governmental entity governed by the Utah Governmental Immunity Act, Utah Code Ann. Title 63G, Chapter 7. Nothing in this agreement is a waiver of any rights, limits, or defenses otherwise available to the Department under the Utah Governmental Immunity Act. If Grantee is also a governmental entity within the State of Utah, nothing in this agreement is as a waiver of any rights, limits or defenses otherwise available to grantee or under the Utah Governmental Immunity Act.

8. Termination – Either party may terminate this grant without cause in advance of the specified expiration date upon written notice. If Grantee terminates, Grantee shall not make any more expenditures and shall meet all of its obligations for the expenditures it has made under the grant. If the Department terminates a competitive grant, upon the Department providing notice of termination, the Department shall not pay for any new expenditure that was contemplated under the grant.

AED Grant Distribution

Salt Lake Cottonwood Heights Police Department

<table>
<thead>
<tr>
<th>Product</th>
<th>Cost</th>
<th>Request</th>
<th>Agency Match</th>
<th>Award</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 AEDs</td>
<td>$2,598</td>
<td>$2,852.18</td>
<td>$1,426.09</td>
<td>$1,426.09</td>
</tr>
<tr>
<td>0 Cabinet</td>
<td>$0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Carrying Cases</td>
<td>$254</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signs</td>
<td>$0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Award: $2,852.18 | $1,426.09 | $1,426.09
COTTONWOOD HEIGHTS

RESOLUTION NO. 2015-03

A RESOLUTION APPROVING AN “EVENT PROPOSAL” CONTRACT WITH CUSTOM EVENTS, INC. FOR CITY’S 10TH ANNIVERSARY CELEBRATION

WHEREAS, the city council (the “Council”) of the city of Cottonwood Heights (the “City”) met on 13 January 2015 to consider, among other things, approving and ratifying an “Event Proposal” contract and an amendment thereto (collectively, the “Agreement”) with Custom Events, Inc. (“Provider”) whereunder the City would retain Provider to provide and oversee various games and events at the City’s 10th anniversary community celebration on the terms and conditions specified in the Agreement; and

WHEREAS, the Council has reviewed the form of the Agreement, a photocopy of which is annexed hereto as an exhibit; and

WHEREAS, after careful consideration, the Council has determined that it is in the best interests of the health, safety and welfare of the citizens of the City to approve the City’s entry into the Agreement as proposed;

NOW, THEREFORE, BE IT RESOLVED by the city council of Cottonwood Heights that the attached Agreement with Provider is hereby approved and ratified, and that the City’s mayor and recorder are authorized and directed to execute and deliver the Agreement on behalf of the City.

This Resolution, assigned no. 2015-03, shall take effect immediately upon passage.

PASSED AND APPROVED this 13th day of January 2015.

COTTONWOOD HEIGHTS CITY COUNCIL

By ______________________________________
Kelvyn H. Cullimore, Jr., Mayor

ATTEST:

Kory Solorio, Recorder

VOTING:

Kelvyn H. Cullimore, Jr. Yea ___ Nay ___
Michael L. Shelton Yea ___ Nay ___
J. Scott Bracken Yea ___ Nay ___
Michael J. Peterson Yea ___ Nay ___
Tee W. Tyler Yea ___ Nay ___

DEPOSITED in the office of the City Recorder this 13th day of January 2015.

RECORDED this ___ day of January 2015.
Amendment to “Custom Events” Event Proposal

THIS AMENDMENT (this “Amendment”) is entered into effective 13 January 2015 between CUSTOM EVENTS, INC., a Utah corporation (“Provider”), and the city of COTTONWOOD HEIGHTS, a Utah municipality (“City”), and shall be deemed to amend those certain “Event Proposal” submissions (collectively, the “Agreement”) described below.

Section 1. Background. City has scheduled its tenth anniversary celebration (the “Event”) for 17 January 2015 at the Cottonwood Heights Recreation Center near 2700 East 7500 South in the City (the “Event Site”), which is owned and operated by the Cottonwood Heights Parks and Recreation Service Area (the “Service Area”). As part of the Event, City desires to provide recreational opportunities to Event participants in the form of rides, games, face-painting and other activities. Provider is in the business of providing such services, and has proposed to provide (as specified in the Agreement) all necessary or advisable equipment, facilities, supervision, etc. for such activities in connection with the Event (collectively, the “Event Services”).

Section 2. Amendments. By their signatures below, the parties mutually accept and enter into the Agreement of approximately even date herewith concerning the Event Services, subject to the following modifications:

(a) Insurance. Provider shall maintain in full force and effect a broad form comprehensive workmen’s compensation, bodily injury and property damage liability insurance policy or policies against claims for damage or injury to persons or property arising out of any of the Event Services (i.e.—whether equipment-based, supervision-based, or otherwise) in connection with the Event. Such policy shall be maintained on the minimum basis of One Million Dollars ($1,000,000.00) combined single limit. Provider shall cause City, Service Area and their respective officers, employees and other designees to be named as additional insureds under such policy, and shall provide to City a certificate evidencing such insurance coverage at least three days before the Event. All insurance required to be carried hereunder shall be with companies, on forms and with loss payable clauses reasonably satisfactory to City. All such policies shall be written as primary policies, not contributing with and not in excess of coverage which City may carry.

(b) Hold Harmless Undertaking. Provider agrees, covenants, and undertakes to indemnify, hold free and harmless, assume liability for, and defend City, Service Area and their respective officers, employees, agents, servants and representatives (collectively, the “Indemnities”) from any and all losses, costs, and expenses, including but not limited to monetary damages, attorney’s fees, investigative and discovery costs, court costs, fines, penalties, increased taxes, and all other sums, that any of the Indemnities may incur, face, pay or become obligated to pay on account of any, all, and every demand for claim or assertion of liability, or any claim or action thereon, arising or alleged to have arisen out of any of the Event Services. The foregoing indemnities, etc. shall not, however, be deemed to waive or modify any rights, defenses, protections or limits of liability of City against third parties under the “Utah Governmental Immunity Act” (UTAH CODE ANN. § 63G-7-101, et seq.).

Section 3. No Other Modifications. Except as specifically amended and modified by this Amendment, the Agreement shall be deemed unmodified and in full force and effect between the parties.

DATED effective the date first-above written.

PROVIDER:

CUSTOM EVENTS, INC., a Utah corporation

By:

Jeffrey Mace, President
CITY:
COTTONWOOD HEIGHTS, a Utah municipality

ATTEST:

By: Kory Solorio, Recorder

By: Kelvyn H. Cullimore, Jr., Mayor
Custom Events

(801) 446-5115
fax: (801) 562-1240
538 west 9560 south
Sandy, Utah 84070
www.customeventsinc.com

EVENT PROPOSAL

Company: Cottonwood Heights City
Contact: Ann Eatchel
Telephone: 801-550-8225
Fax/email: aeatchel@ch.utah.gov
Date: Saturday January 17th 2015
Time: 6:00 p.m. – 9:00 p.m.
Location: Cottonwood Heights Rec. Center 7500 South 2700 East, Cottonwood Heights

Custom Events will provide the following services:

18 Foot Double Lane Slide. This colorful inflatable slide is great fun for all ages, it is double wide so two riders can go at the same time. Not only is it fun, but riders also move through quickly so it is great for large crowds who don’t like to wait in line!

40 Foot Obstacle Course. This is a fun and colorful obstacle course built for all ages! Race your friends, family or even your enemies through this awesome and challenging course!

Moon Walk. Everyone loves this feature! Climb inside and let the fun begin. Kids of all ages bounce as high as they can!

5 Old Fashioned Table Midway Games. Every game is unlimited play. Our midway games are all professionally manufactured, and played behind colorful booths. There is always a wide
variety of fun prizes for the winners, and consolation prizes for everyone!

4 Face Painters Kids of all ages love the attention they get from having characters painted on their face!

The total price for the above services will be: $3,030.00

Minus We love you discount: savings of $630.00

Subtotal before tax: $2,400.00

Sales tax of 6.85%: $N/A Tax Exempt

Grand total price after tax: $2,400.00

To book the above services a 25% deposit is required along with a signed copy of an acceptable proposal.

^The remainder will be due on the day of your event.^

Custom Events Inc. schedules the use of attractions on a first come, first serve basis. The equipment on this proposal is not guaranteed unless a signed copy is received and confirmed by Custom Events Inc.

Custom Events Inc. operates all equipment according to manufacturer, and insurance
specifications. Custom Events Inc. will not be held liable if wind, weather, or other acts of nature affect our ability to perform this event.

***This contract is subject to a $25% cancellation fee if event is cancelled within 30 days of event date.

Proposal accepted by: ______________________________

Kelvyn H. Cullimore, Jr., Mayor

Attest:__

Kory Solorio, Recorder

Date signed: ______________________________________

Mailing Address:

Cottonwood Heights
Attn. Ann Eatchel
1265 East Fort Union Blvd., Suite 250
Cottonwood Heights, UT 84047